A decomposition of Markov processes

By Keniti SATO

(Received Jan. 7, 1965)

§1. Introduction.

Let S be a locally compact metric space and D be an open set having closure S and non-empty compact boundary $\partial D = S - D$. Let $B(S) [B(\partial D)]$ be the Borel field generated by all the closed sets in $S [\partial D]$, and $B(S) [B(\partial D)]$ be the space of real-valued bounded B(S)-measurable $[B(\partial D)$ -measurable] functions on $S [\partial D]$. Suppose that we are given a Markov process $X = (x_i(w), W, P_x : x \in S)$ taking values in S. Here W is a space of path functions w, and we denote the initial point by the subscript x in P_x . Precise definitions will be given in Section 2. The word 'Markov process' is used for time homogeneous Markov process in this paper. We define operators $G_{\alpha} : B(S) \to B(S)$ and $H_{\alpha} : B(\partial D) \to B(S)$ by

and

$$H_{\alpha}f(x) = E_x[e^{-\alpha\sigma}f(x_{\sigma})],$$

 $G_{\alpha}f(x) = E_{x} \left[\int_{0}^{\zeta} e^{-\alpha t} f(x_{t}) dt \right]$

where $\zeta = \zeta(w)$ is the lifetime, $\sigma = \sigma(w)$ is the first hitting time to ∂D , and E_x is the integration by P_x . We call G_α the α -order Green operator of X, and H_α the α -order hitting operator to ∂D of X. $G_\alpha [H_\alpha]$ is an integral operator by a measure $G_\alpha(x, dy) [H_\alpha(x, dy)]$ on $S [\partial D]$, called the α -order Green measure $[\alpha$ -order hitting measure to ∂D]. Further, define $G_\alpha^{\min}: B(S) \to B(S)$ by

$$G_{\alpha}^{\min}f(x) = E_x \left[\int_0^{\min(\sigma,\zeta)} e^{-\alpha t} f(x_t) dt \right].$$

Then, G_{α}^{\min} is the α -order Green operator of a Markov process, which we call the minimal part of X. To say intuitively, we get the minimal part, killing x_t at the instant x_t reaches ∂D . Roughly speaking, the motion of X is determined by its minimal part and its behavior on the boundary. But, how can we characterize the behavior on the boundary? This is not simple, since the time spent by X on the boundary may have zero Lebesgue measure. We are concerned with this problem under some conditions.

Let *m* be a measure on *S* finite for any compact set, and let $m(\partial D) = 0$. *m* is fixed through this paper except in Section 6. We assume that the Markov process *X* satisfies Condition (*A*) stated in Section 2. Condition (*A*) requires, among others, that $G_{\alpha}(x, dy)$ is expressed by $g_{\alpha}(x, y)m(dy)$ for each *x*