A decomposition of Markov processes

By Keniti SATO

(Received Jan. 7, 1965)

§ 1. Introduction.

Let S be a locally compact metric space and D be an open set having closure S and non-empty compact boundary $\partial D = S - D$. Let $\bm{B}(\mathcal{S})$ $[\bm{B}(\partial D)]$ be the Borel field generated by all the closed sets in $S[\partial D]$, and $B(S)[B(\partial D)]$ be the space of real-valued bounded $\bm{B}(S)$ -measurable $[\bm{B}(\partial D)$ -measurable functions on S [∂D]. Suppose that we are given a Markov process $X = (x_{t}(w))$ $W, P_{x}: x \in S$) taking values in S. Here W is a space of path functions w , and we denote the initial point by the subscript x in P_{x} . Precise definitions will be given in Section 2. The word ' Markov process' is used for time homogeneous Markov process in this paper. We define operators $G_{\alpha} : B(S) \rightarrow B(S)$ and $H_{\alpha} : B(\partial D) \rightarrow B(S)$ by

and

$$
H_{\alpha}f(x) = E_x[e^{-\alpha\sigma}f(x_{\sigma})],
$$

 $G_{\alpha}f(x)=E_{x}\left[\int_{0}^{\zeta}e^{-\alpha t}f(x_{t})dt\right]$

where $\zeta=\zeta(w)$ is the lifetime, $\sigma=\sigma(w)$ is the first hitting time to ∂D , and E_{x} is the integration by P_{x} . We call G_{α} the α -order Green operator of X, and H_{α} the α -order hitting operator to ∂D of X. $G_{\alpha}[H_{\alpha}]$ is an integral operator by a measure $G_{\alpha}(x, dy)$ [$H_{\alpha}(x, dy)$] on S [∂D], called the α -order Green measure $\lceil \alpha$ -order hitting measure to ∂D . Further, define $G_{\alpha}^{\min} : B(S) \rightarrow B(S)$ by

$$
G_a^{\min} f(x) = E_x \left[\int_0^{\min(\sigma,\zeta)} e^{-\alpha t} f(x_t) dt \right].
$$

Then, G_{α}^{\min} is the α -order Green operator of a Markov process, which we call the minimal part of X. To say intuitively, we get the minimal part, killing x_{t} at the instant x_{t} reaches ∂D . Roughly speaking, the motion of X is determined by its minimal part and its behavior on the boundary. But, how can we characterize the behavior on the boundary? This is not simple, since the time spent by X on the boundary may have zero Lebesgue measure. We are concerned with this problem under some conditions.

Let *m* be a measure on S finite for any compact set, and let $m(\partial D)=0$. *is fixed through this paper except in Section 6. We assume that the* Markov process X satisfies Condition (A) stated in Section 2. Condition (A) requires, among others, that $G_{\alpha}(x, dy)$ is expressed by $g_{\alpha}(x, y)m(dy)$ for each x