On the equivalence problems associated with a certain class of homogeneous spaces

By Noboru TANAKA

(Received Sept. 19, 1964)

Introduction

The present paper, first of all, introduces the notion of an *l*-system on which our theory is based. An *l*-system *L* is defined to be a system of a real semi-simple Lie algebra \mathfrak{g} and three subalgebras of \mathfrak{g} satisfying certain conditions (Definition 1.1). To every *l*-system *L* we associate a homogeneous space $M_L = G/G'$ of a Lie group *G* over a closed subgroup G' of *G* (see § 1). It is remarkable that the homogeneous space $M_L = G/G'$ is a prolongation of a compact Riemannian symmetric space in the following sense (cf. Proposition 3.2): A maximal compact subgroup *K* of *G* acts transitively on M_L , and the homogeneous space $M_L = K/K \cap G'$ is a compact Riemannian symmetric space. A recent work of T. Nagano [7] proves that, roughly speaking, any prolongation of a compact Riemannian symmetric space is locally isomorphic with a homogeneous space of the form $M_L = G/G'$.

Now let L be an l-system and let $M_L = G/G'$ be the corresponding homogeneous space. G being considered as a transformation group on M_L , the linear isotropy group \tilde{G} of G at the origin o of M_L is a subgroup of the general linear group $GL(\mathfrak{m})$ of the tangent vector space \mathfrak{m} to M_L at o. In this way, to every l-system L there corresponds a representation (\tilde{G} , \mathfrak{m}). Therefore there can be defined the notion of a \tilde{G} -structure: A \tilde{G} -structure on a manifold M is a principal fiber bundle \tilde{P} over the base space M with structure group \tilde{G} which is a subbundle of the bundle of frames of M (Definition 5.1).

The main purpose of the present paper is, for a given *l*-system *L*, to study conditions for the equivalence of two \tilde{G} -structures. Our main results (Theorems 9.3, 9.4, 10.1 and 10.2) may be stated as follows: Under general hypotheses on *L*, to every \tilde{G} -structure \tilde{P} there is associated a system, called the normal connection of type (*L*), in such a way that the equivalence of two \tilde{G} -structures can be characterized. The normal connection of type (*L*) is a Cartan connection corresponding to the homogeneous space $M_L = G/G'$ and is found to be a generalization of the normal conformal connection. It should be here noted that there also exists the notion of the normal connection of