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There have been some fragments asserting that a Riemann matrix of a
curve does not decompose into a direct sum. But it seems to the authors that
there have been no attempts, as far as they know, to treat the subject rig-
orously and systematically.

In this paper we shall examine if a product $E\times E^{\prime}$ of elliptic curves $E$

and $E^{\prime}$ , with rings of endomorphisms isomorphic to the principal order of an
imaginary quadratic field $Q(\sqrt{-m})$ , can be a Jacobian variety of some curve
of genus 2 on $E\times E^{\prime}$ . Rather unexpectedly the following result is obtained:
$E\times E^{\prime}$ can be a Jacobian variety for all values of $m$ except 1, 3, 7 and 15 (cf.

paragraph 4, Theorem). In the last paragraph we shall show that there are
only a finite number of curves of genus 2 on $E\times E^{\prime}$ up to isomorphism. In a
forthcoming paper it will be shown that the number tends to infinity with $m$ .

Let $E$ and $E^{\prime}$ be two elliptic curves. We denote by $Hom(E, E^{\prime})$ the set
of all homomorphisms of $E$ into $E^{\prime}$ ; in particular when $E=E^{\prime}$ , we denote
$Hom(E, E)$ by $\mathfrak{A}(E)$ . We put $\mathfrak{A}_{0}(E)=\mathfrak{A}(E)\otimes Q$ , where $Q$ is the field of ra-
tional numbers. We denote by $Z$ the ring of rational integers.

\S 1. Preliminaries.

Let $Q(\sqrt{-m})$ be an imaginary quadratic field and $\mathfrak{v}$ its principal order;

when $m=0$ , we may understand that $Q(\sqrt{-m})$ and $0$ coincide with $Q$ and $Z$

respectively. We consider an elliptic curve $E$ for which $\mathfrak{A}_{0}(E)$ and $\mathfrak{A}(E)$ are
isomorphic to $Q(\sqrt{-m})$ and $0$ respectively. Since in case $m\neq 0,$ $Q(\sqrt{-m})$ has

two automorphisms, there are two isomorphisms of $Q(\sqrt{-m})$ on $\mathfrak{A}_{0}(E)$ . We
choose and fix one of them, and denote it by $f$ . We can identify $\mathfrak{A}(E)$ with
$0$ by $f$ .

For any finite number of endomorphisms $\lambda_{1},$ $\cdots$ , $\lambda_{n}\in 0$ of $E,$ $\{\lambda_{1}, \cdots , \lambda_{n}\}$

$\neq\{0, \cdots , 0\}$ , the correspondence


