On some properties of a proximity

By Eiichi HAYASHI

(Received March 30, 1964) (Reveised July 3, 1964)

§ 1. Introduction.

Efremovich [1] defined a relation δ on a set, called a *proximity*. For a pair of subsets A and B of a point set R we usually write $A\delta B$ if A and B are proximate, otherwise $A\overline{\delta}B$. Throughout this paper we shall use the notations $(A,B)\in\delta$ and $(A,B)\notin\delta$ instead of $A\delta B$ and $A\overline{\delta}B$ respectively. (See Pervin [2].)

Efremovich required that the relation δ should satisfy the following four axioms:

Axiom 0. (Symmetry) $(A, B) \in \delta$ if and only if $(B, A) \in \delta$.

Axiom 1. Both $(A, C) \in \delta$ and $(B, C) \in \delta$ if and only if $(A \cup B, C) \in \delta$.

Axiom 2. For arbitrary two points $a, b \in R$, $(\{a\}, \{b\}) \in \delta$ if and only if a = b.

Axiom 3. (Separation) If $(A, B) \in \delta$ then there are disjoint subsets U and V of R such that $(A, R-U) \in \delta$ and $(B, R-V) \in \delta$.

Efremovich [1, p. 196] showed that every proximity on a set R yields a completely regular space if one defines the topology of R as follows: a subset U of R is a neighborhood of $A \subset R$ if and only if $(A, R-U) \in \delta$. This definition can be replaced by the following: (#) a subset G of R is defined to be open if and only if $(\{x\}, R-G) \in \delta$ for every $x \in G$. (See Császár et Mrówka [3, p. 195].)

In this paper we shall first (§ 2) define slightly different axioms from Efremovich's. In § 3 we shall show that our proximity on a set yields a completely normal space. The last section 4 will be devoted to an example of our proximity on a set.

§ 2. Definitions and lemmas.

By a paraproximity on a set R we mean a relation δ for pairs of subsets of R satisfying the following axioms:

Axiom I. $(A, \phi) \in \delta$ for every $A \subset R$.