On meromorphic and circumferentially mean univalent functions

By Hitoshi ABE

(Received Nov, 25, 1963) (Revised March 21, 1964)

Introduction.

It is well known that the so-called one-quarter theorem plays an important role in the theory of regular and univalent functions in |z| < 1. This theorem was extended to the case of circumferentially mean univalence (defined in § 1) by Hayman [6] and moreover to the case of areally mean univalence by Garabedian and Royden [5]. Their method was based on the fact that inner radius does not decrease by circular symmetrization (cf. [7]). On the other hand, corresponding to the one-quarter theorem, the following Montel-Bieberbach's theorem ([2], [3], [13], [14]) is well known in the case of meromorphic and univalent functions.

If $f(z) = z + a_2 z^2 + \cdots$ is meromorphic and univalent in |z| < 1, then at least one of the circles $|w| < \delta$ or $|w| > \delta^{-1}$ ($\delta = \sqrt{5} - 2$) is wholly covered by the image-domain under w = f(z).

In this paper we shall first prove a fundamental theorem on meromorphic and circumferentially mean univalent functions in |z| < 1, by means of the fact that transfinite diameter does not increase by circular symmetrization and then generalized Montel-Bieberbach's theorem to the case of circumferentially mean univalence or *p*-valence.

Secondly we shall deal with values omitted by meromorphic and circumferentially mean univalent functions in |z| < 1 also by means of the above mentioned property of transfinite diameter.

Thirdly we consider meromorphic and circumferentially mean univalent functions in |z| < 1, whose Taylor expansions about the origin are given by $f(z) = z + a_2 z^2 + \cdots$ and whose poles are explicitly denoted by $z = z_{\infty}$, (as will be remarked in § 1, f(z) has only one simple pole in |z| < 1). By means of the pole $z = z_{\infty}$ we shall evaluate the values taken by w = f(z) and its second Taylor coefficient a_2 . Moreover a type of distortion theorem based on the pole $z = z_{\infty}$ will be derived.