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Introduction.

It is well known that the so-called one-quarter theorem plays an important
role in the theory of regular and univalent functions in $|z|<1$ . This theorem
was extended to the case of circumferentially mean univalence (defined in \S 1)
by Hayman [6] and moreover to the case of areally mean univalence by Gara-
bedian and Royden [5]. Their method was based on the fact that inner
radius does not decrease by circular symmetrization (cf. [7]). On the other
hand, corresponding to the one-quarter theorem, the following Montel-Bieber-
bach’s theorem ([2], [3], [13], [14]) is well known in the case of meromorphic
and univalent functions.

If $ f(z)=z+a_{2}z^{2}+\cdots$ is meromorphic and univalent in $|z|<1$ , then at
least one of the circles $|w|<\delta$ or $|w|>\delta^{-1}(\delta=\sqrt{5}-2)$ is wholly covered by
the image-domain under $w=f(z)$ .

In this paper we shall first prove a fundamental theorem on meromorphic
and circumferentially mean univalent functions in $|z|<1$ , by means of the
fact that transfinite diameter does not increase by circular symmetrization
and then generalized Montel-Bieberbach’s theorem to the case of circumferen-
tially mean univalence or $p$ -valence.

Secondly we shall deal with values omitted by meromorphic and circum-
ferentially mean univalent functions in $|z|<1$ also by means of the above
mentioned property of transfinite diameter.

Thirdly we consider meromorphic and circumferentially mean univalent
functions in $|z|<1$ , whose Taylor expansions about the origin are given by
$ f(z)=z+a_{2}z^{2}+\cdots$ and whose poles are explicitly denoted by $z=z_{\infty}$ , (as will be
remarked in \S 1, $f(z)$ has only one simple pole in $|z\uparrow<1$). By means of the
pole $z=z_{\infty}$ we shall evaluate the values taken by $w=f(z)$ and its second
Taylor coefficient $a_{2}$ . Moreover a type of distortion theorem based on the
pole $z=z_{\infty}$ will be derived.


