Note on the computation of Bessel functions through recurrence formula

by Sin HITOTUMATU

(Received May 9, 1963)

§1. Introduction. The problem.

As is well-known, Bessel function of the first kind $J_n(x)$ satisfies the recurrence formula

$$J_{n+1}(x) - \frac{2n}{x} J_n(x) + J_{n-1}(x) = 0.$$
 (1)

For a fixed value x, we may compute the values of $J_2(x), J_3(x), \cdots$ through the formula (1), if we know the values of $J_0(x)$ and $J_1(x)$. However, this method does not fit to the practice, because the formula (1) implies serious *unstability*¹⁾. Even if the initial values of $J_0(x)$ and $J_1(x)$ have a little error, the successive values of $J_n(x)$ given by (1) will, in general, tend to $+\infty$ or $-\infty$, although the true values of $J_n(x)$ must tend to 0 when $n \to +\infty$.

On the other hand, it is useful to apply the formula (1) from large values of n to the smaller ones. Precisely speaking, the value of $J_n(x)$ is computed by the following algorism.

1°. Choose sufficiently large N, which will be discussed later, and put

$$j_{N+1}^*=0, \quad j_N^*=\varepsilon.$$

Here ϵ is usually taken as the smallest positive number admissible in the computor, viz., 10^{-10} or 2^{-128} , etc.

2°. Compute j_n^* ($n = N-1, N-2, \dots, 1, 0$) by the recurrence formula

$$j_{n-1}^{*} = \frac{2n}{x} j_{n}^{*} - j_{n+1}^{*}.$$
 (1')

3°. Noting the relation

$$J_{0}(x) \! + \! 2 \sum_{n=1}^{\infty} J_{2n}(x) \! = \! 1$$
 ,

the values of $J_n(x)$ are obtained by

$$J_n(x) = \frac{1}{K} j_n^* \tag{2}$$

where we have put

¹⁾ This unstability is well known; e.g. see Uno [4].