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\S 1. Introduction. The problem.

As is well-known, Bessel function of the first kind $J_{n}(x)$ satisfies the
recurrence formula

$J_{n+1}(x)-\frac{2n}{x}J_{n}(x)+J_{n-1}(x)=0$ . (1)

For a fixed value $x$, we may compute the values of $J_{2}(x),J_{3}(x),$ $\cdots$ through the
formula (1), if we know the values of $J_{0}(x)$ and $J_{1}(x)$ . However, this method
does not fit to the practice, because the formula (1) implies serious unstabilityl).

Even if the initial values of $J_{0}(x)$ and $J_{1}(x)$ have a little error, the successive
values of $J_{n}(x)$ given by (1) will, in general, tend to $+\infty$ or $-\infty$ , although the
true values of $J_{n}(x)$ must tend to $0$ when $ n\rightarrow+\infty$ .

On the other hand, it is useful to apply the formula (1) from large values
of $n$ to the smaller ones. Precisely speaking, the value of $J_{n}(x)$ is computed
by the following algorism.

1. Choose sufficiently large $N$, which will be discussed later, and put
$j_{N+1}^{*}=0$, $ j_{N}^{*}=\epsilon$ .

Here $\epsilon$ is usually taken as the smallest positive number admissible in the
computor, viz., $10^{-10}$ or $2^{-128}$ , etc.

2. Compute $j_{n}^{*}$ $(n=N-1, N-2, \cdots , 1, 0)$ by the recurrence formula

$j_{n-1}^{*}=\frac{2n}{x}j_{n}^{*}-j_{n+1}^{*}$ . (1)

3. Noting the relation

$J_{0}(x)+2\sum_{n=1}^{\infty}J_{2n}(x)=1$ ,

the values of $J_{n}(x)$ are obtained by

$J_{n}(x)=\frac{1}{K}j_{n}^{*}$ (2)

where we have put

1) This unstability is well known; $e$ . $g$ . see Uno [4].


