On Gaussian sums attached to the general linear groups over finite fields

by Takeshi KONDO

(Received Sept. 25, 1962)

Introduction. Let $F(q) (=F_q)$ be the finite field with q elements, q being a power of a prime number p. We denote by $M_n(F_q)$ the total matric ring of degree n over F_q , and by GL(n, q) the group of regular elements of $M_n(F_q)$. To any irreducible representation ξ of GL(n, q) by complex matrices, we can attach *Gaussian sums* $W(\xi, A)$ as follows. For every positive integer d, and for every $\alpha \in F(q^d)$, put

$$e_d[\alpha] = \exp\left[\frac{2\pi\sqrt{-1}}{p}\operatorname{Tr}_{F(q^d)|F(p)}(\alpha)\right].$$

Then, for every $A \in M_n(F_q)$, we define $W(\xi, A)$ by

$$W(\xi, A) = \sum_{X \in G(n,q)} \xi(X) e_1[\operatorname{tr}(AX)].$$

The matrices of this kind were investigated in E. Lamprecht [1] for the multicative groups of more general finite rings, but the explicit values of these matrices were not obtained.

The purpose of the present paper is to determine explicitly $W(\xi, A)$ for non-singular A and any irreducible representation ξ of GL(n, q). To explain our result, first we note that, if $A \in GL(n, q)$,

$$W(\xi, A) = \xi(A)^{-1} W(\xi, 1_n)$$
,

where 1_n denotes the identity element of $M_n(F_q)$. Moreover, we see easily that $W(\xi, 1_n)$ is a scalar matrix. Then define a complex number $w(\xi)$ by

$$W(\xi, 1_n) = w(\xi)\xi(1_n).$$

Fix once and for all an isomorphism θ of the multiplicative group of $F(q^{n!})$ into the multiplicative group of complex numbers. Further fix a generator ε of the multiplicative group of $F(q^{n!})$, and put, for every integer d such that $1 \leq d \leq n$,

$$arepsilon_{d}=arepsilon^{\kappa}$$
, $\kappa=rac{q^{n!}-1}{q^{d}-1}$.

Then ε_d is a generator of the multiplicative group of $F(q^d)$. For every irreducible polynomial g of degree d with coefficients in F(q), we define the usual