Projective modules over weakly noetherian rings

By Yukitoshi HINOHARA

(Received May 31, 1962)

Introduction. Let R be a commutative ring with a unit element. Then the space of prime ideals of R with the Zariski topology is called the *prime spectrum* of R which is denoted by spec(R), and the subspace of spec(R) of all maximal ideals of R is called the *maximal spectrum* of R which is denoted by *m*-spec(R). The dimension of such a space is the supremum of the lengths of chains of irreducible closed subsets. (See [1] and [10].) For brevity, we shall call a ring *weakly noetherian* if *m*-spec(R) satisfies the descending chain condition on closed subsets. Our main objective in this paper is to prove

THEOREM. If R is a weakly noetherian ring and dim $(m-\operatorname{spec}(R))$ is finite, then any projective R-module is a direct sum of finitely generated projective Rmodules.

From this we can easily deduce that, over a commutative indecomposable semilocal ring¹⁾, any projective module is free²⁾.

Now let R be a commutative ring, M an R-module. Then M is called *faithfully flat* if M satisfies any one of the following equivalent conditions. (see § 6.4 [5] p. 57):

(a) A sequence of *R*-modules $N' \to N \to N''$ is exact if and only if $M \bigotimes_{R} N' \to M \bigotimes_{R} N \to M \bigotimes_{R} N''$ is exact.

(b) M is flat and, for any R-module N, the relation $M \bigotimes_{R} N = (0)$ implies N = (0).

(c) M is flat and, for any homomorphism v: N→N' of R-modules, the relation 1_M⊗v=0 implies v=0 where 1_M is the identity automorphism of M.
(d) M is flat and, for any maximal ideal m of R, mM≠M.

To prove the main theorem, we shall prove that, if R is an indecomposable weakly noetherian ring, any projective module (\neq (0)) is faithfully flat.

We shall always be dealing with rings with unit element and unitary modules. Further, unless the contrary is stated, "module" means "left module". Λ denotes a ring (not always commutative) and R denotes a commutative ring.

¹⁾ A ring is called indecomposable if it has no non-trivial idempotents. A commutative ring is called semilocal if the number of the maximal ideals is finite.

²⁾ See [7].