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1. Introduction.

The theory of norm residue symbol in algebraic number fields has been
variously treated. An explicit formula of the local norm symbol has been given
as the \v{S}afarevi\v{c} symbol by \v{S}afarevi\v{c} [8]. Hasse [5] and Kneser [7] improved
the result of \v{S}afarevi\v{c} and supplied a link for the $2^{n}$-th symbols.

As for a more special case than that of \v{S}afarevi\v{c}, Yamamoto [11] has
proved the local reciprocity law of Kummer-Hilbert, on which the present
author gave a note [9].

The structure of norm group of Kummer extension of prime degree was
characterized to a certain extent by Hensel-Hasse [6]. The specially important
formula of Hasse

$(\frac{\nu}{\mu})(\frac{\mu}{\nu})=(-1)^{s(\frac{1-t^{\ell}}{2})}1-\nu_{-}2$ $(\mu\equiv\nu\equiv 1(2))$ ,

is widely known. Here $\mu,$ $\nu$ mean two total-positive numbers in an algebraic
number field which are mutually prime, and $S$ denotes the trace from this field
to the field of rational numbers.

Recently Siegel [10] proved the formula of Hasse from the viewpoint of
the Gauss-Hecke sum in the theta function theory.

In this paper it is our purpose to give a local refinement of the formula of
Hasse, from which we also show that the \v{S}afarevi\v{c}-Hasse-Kneser formula [5],

[7] in the quadratic case can be readily derived.
Our method is to calculate explicitly the norm elements in the quadratic

case by means of an idea of Yamamoto [11] and the present author [9]. In
order to make this paper self-contained we shall prove several lemmas analogous
to those given in [11], [9].

2. Several preliminary lemmas.

Let $k$ be a local number field of finite degree over the field of rational 2-adic
numbers $R_{2},$ $e$ its ramification order, $f$ its residue class degree and $h_{r}$ the field
of inertia, $i$ . $e.$ , the maximal unramified field, contained in $k$ . We denote by
$\mathfrak{O}_{R_{2}},$ $\mathfrak{O}_{k},$ $\mathfrak{O}_{k_{T}}$ the rings of integers in $R_{2},$ $k,$ $k_{r}$ respectively and also by I, $7T$


