Remarks on differentiable structures on spheres

By Itiro TAMURA

(Received June 23, 1961)

J. Milnor [2] defined the invariant λ' for compact unbounded oriented differentiable (4k-1)-manifolds which are homotopy spheres and boundaries of π manifolds at the same time, and proved that the invariant λ' characterizes the *J*-equivalence classes of these (4k-1)-manifolds for k > 1. Recently S. Smale [3] has shown that a compact unbounded (oriented) differentiable *n*-manifold $(n \ge 5)$ having the homotopy type of S^n is homeomorphic to S^n and that two such manifolds belonging to the same *J*-equivalence class are diffeomorphic to each other if $n \ne 6$. Hence it turns out that the invariant λ' characterizes differentiable structures on S^{4k-1} which bound π -manifolds for k > 1.

In this note we shall compute the invariant λ' of $B_{m,1}^{\tau}$ (S^3 bundles over S^4 , see [4]) and show that every differentiable structure on S^{τ} can be expressed as a connected sum of $B_{m,1}^{\tau}$. We shall obtain also a similar result on S^{15} . Furthermore we shall show that $\overline{B}_{m,1}^8 \cup_i D^8$ such that $m(m+1) \equiv 0 \mod 56$ are 3-connected compact unbounded differentiable 8-manifolds with the 4th Betti number 1 and differentiable 8-manifolds of this type are exhausted by them, where $B_{m,1}^8$ are 4-cell bundles over S^4 ([4]). This will reveal that Pontrjagin numbers are not homotopy type invariants.

Notations and terminologies of this note are the same as in the previous paper [4]. We shall use them without a special reference.

1. The invariant λ' of $B_{m,1}^{\gamma}$.

In the following $M_1^{n-1} \# M_2^{n-1}$ will denote the connected sum of two compact connected unbounded oriented differentiable (n-1)-manifolds M_1^{n-1} and M_2^{n-1} (Milnor [2]). Let W_1^n and W_2^n be two compact connected oriented differentiable *n*-manifolds with non-vacuous boundaries; let $f_1: D^{n-1} \rightarrow \partial W_1^n$ be an orientation-preserving differentiable imbedding and $f_2: D^{n-1} \rightarrow \partial W_2^n$ be an orientation-reversing differentiable imbedding. Then $W_1^n + W_2^n$ denotes the compact connected oriented differentiable *n*-manifold with boundary obtained from the disjoint union of W_1^n and W_2^n by identifying $f_1(x)$ with $f_2(x)$ ($x \in D^{n-1}$), making use of the device of "straightening the angle".

We choose an orientation of $B_{m,1}^7$ (resp. $B_{m,1}^{15}$) and that of $\bar{B}_{m,1}^8$ (resp. $\bar{B}_{m,1}^{16}$)