On the Goldbach problem in an algebraic number field II.

By Takayoshi MITSUI

(Received Aug. 18, 1959)

§ 4. Treatment of $I_s(\mu; \lambda)$ (I).

Let λ be a totally positive integer with sufficiently large norm $N(\lambda)$ and $\Omega(\lambda)$ be the set of all prime numbers ω such that

(4.1)
$$0 < \omega^{(q)} \le \lambda^{(q)} \qquad (q = 1, 2, \dots, r_1), \\ | \omega^{(p)} | \le | \lambda^{(p)} | \qquad (p = r_1 + 1, \dots, r_1 + r_2).$$

We shall define a trigonometrical sum

(4.2)
$$S(z;\lambda) = \sum_{\omega \in \mathcal{Q}(\lambda)} e^{2\pi i S(\omega_2)},$$

where $z = (z_1, z_2, \dots, z_n)$ is a point of E.

We know by (2.1) that z_1, z_2, \dots, z_n are written in the form

$$z_j = \sum_{k=1}^n x_k \delta_k^{(j)}$$
 $(j = 1, 2, \cdots, n)$

with real numbers x_1, x_2, \dots, x_n . Taking x_1, x_2, \dots, x_n as variables, we consider an integral

(4.3)
$$I_{s}(\mu:\lambda) = \int_{-1/2}^{1/2} \int S(z;\lambda)^{s} e^{-2\pi i S(\mu_{z})} dx_{1} dx_{2} \cdots dx_{n},$$

where s is a positive rational integer, μ is a totally positive integer and the domain of integration is given by the conditions

$$|x_j| \leq \frac{1}{2}$$
 $(j=1,2,\cdots,n).$

We see that $I_s(\mu; \lambda)$ is equal to the number of the s-tuples $(\omega_1, \omega_2, \dots, \omega_s)$ of prime numbers which satisfy the following conditions:

$$\mu = \omega_1 + \omega_2 + \cdots + \omega_s$$
,
 $\omega_j \in \Omega(\lambda)$ $(j = 1, 2, \cdots, s)$.

Therefore, for any totally positive unit η we have

$$I_{s}(\eta \mu; \eta \lambda) = I_{s}(\mu; \lambda).$$

On the other hand, by suitable choice of a totally positive unit η_0 we have

$$c_1 N(\lambda)^{1/n} < |\lambda^{(j)} \eta_0^{(j)}| < c_2 N(\lambda)^{1/n}$$
 $(j = 1, 2, \cdots, n).$