Journal of the Mathematical Society of Japan

Commutative group varieties.

To the memory of Y. Taniyama.

By Satoshi ARIMA

(Received Nov. 29, 1958)

The purpose of this paper is to generalize some results of Weil [6] on abelian varieties to the case of commutative group varieties. An element, of a group, whose order is finite and divides n will be called an *n*-division point. In § 1, we first count the number of *n*-division points on a commutative group variety and see that a commutative group variety without affine subgroup is generated by division points. We can introduce therefore a system of *l*-adic coordinates on such a group G, and get the *l*-adic representation of the ring of endomorphisms of G. Next we shall show the symmetric property of isogenies between divisible commutative group varieties, where an isogeny means a surjective (rational) homomorphism between two group varieties of the same dimension. In § 2, we shall see that a group variety defined over a finite field is generated by an abelian variety and a linear group variety (Theorem 1), and that the algebra of endomorphisms of a divisible commutative group variety and a linear group variety the field of rational numbers.

We use the following terminologies and notations throughout the paper. A homomorphism of a group variety into a group variety means always a rational homomorphism; we use "endomorphism" in the corresponding sense. An algebraic subgroup of a group variety is an abstract subgroup which is a closed subset in the sense of Zariski topology. An affine group is a group variety which is biregularly equivalent to an affine space as a variety. G_a denotes the additive group of the universal domain and G_m the multiplicative group of the non-zero elements of the universal domain. A biregular isomorphism between group varieties is a group-isomorphism defined by a birational mapping which we denote by \cong . $T \supset S$ means that T contains S but not equals S. For a natural number n, we denote by n[G] the number of n-division points on a group G. We denote the characteristic of the universal domain by p. We write the (commutative) group-operation additively.

§1. Division points.

1. Let G be a commutative group variety and L be its maximal linear