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Commutative group varieties.
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The purpose of this paper is to generalize some results of Weil [6] on
abelian varieties to the case of commutative group varieties. An element, of
a group, $who^{\sim}e$ order is finite and divides $n$ will be called an n-division point.
In \S 1, we first count the number of n-division points on a commutative group
variety and see that a commutative group variety without affine subgroup
is generated by division points. We can introduce therefore a system of l-
adic coordinate\^o on such a group $G$ , and get the l-adic representation of the
ring of endomorphisms of $G$ . Next we shall show the symmetric property
of isogenies between divisible commutative group varieties, where an isogeny
means a surjective (rational) homomorphism between two group varieties of
the same dimension. In \S 2, we shall see that a group variety defined over
a finite field is generated by an abelian variety and a linear group variety
(Theorem 1), and that the algebra of endomorphisms of a divisible commuta-
tive group variety defined over a finite field is a semi-simple algebra over
the field of rational numbers.

We use the following terminologies and notations throughout the paper.
A homomorphism of a group variety into a group variety means always a
rational homomorphism; we use “ endomorphism “ in the corresponding sense.
An algebraic subgroup of a group variety is an abstract subgroup which is
a closed subset in the sense of Zariski topology. An affine group is a group
variety which is biregularly equivalent to an affine space as a variety. $G_{a}$

denotes the additive group of the universal domain and $G_{m}$ the multiplica-
tive group of the non-zero elements of the universal domain. A biregular
isomorphism between group varieties is a group-isomorphism defined by a
birational mapping which we denote by $\cong$ . $T\supset S$ means that $T$ contains $S$

but not equals S. For a natural number $n$ , we denote by $n[G]$ the number
of n-division points on a group $G$ . We denote the characteristic of the uni-
versal domain by $p$ . We write the (commutative) group-operation additively.

\S 1. Division points.

1. Let $G$ be a commutative group variety and $L$ be its maximal linear


