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S. Kobayashi [3] proved that a compact connected homogeneous Rieman-
nian manifold $M$ of dimension $n$ is isometric to the sphere if it is isometri-
cally imbedded in the euclidean space $E$ of dimension $n+1$ . In this paper
we shall prove that a connected homogeneous Riemannian space $M$ (compact

or not) of dimension $n$ is isometric to the Rier annian product of a sphere
and a euclidean space if $M$ is isometrically imbedded in the euclidean space
$E$ of dimension $n+1$ and the rank of the second fundamental form $H$ is of
rank $\neq 2$ at some point.

Manifolds and mappings between them will always be of differentiability
class $C^{\infty}$ .

1. Preliminaries.

Let $M$ be a connected Riemannian manifold. Assume that there exists
an isometric map $f$ of $M$ into a euclidean space $E$, in which we fix a cartesian
coordinate system. $f$ is isometric in the sense that the dual map of the
differential $f^{\prime}$ of $f$ carries the Riemannian metric of $E$ to that of $M$.

Assigning to a point $p$ of $M$ the A-th coordinate component of $f(p)$ ,
$1\leqq A\leqq\dim E$, we obtain a function $f^{A}$ on $M$. For any vector $X$ tangent to
$M$ at $x$, we denote by $Xf$ the vector tangent to $E$ at $f(x)$ whose A-th com-
ponent is $Xf^{A}$ and call $Xf$ the covariant differentiation of $f$ in $X$. We shall
write $X$ for $\nabla_{X}$ or $X^{\mu}\nabla_{\mu}$ in coordinates as long as no ambiguity might be
feared. In the same way one can define the covariant differentiation $Xf^{\prime}$ of
the differential $f^{\prime}$ of $f$ and other objects such as a map of $M$ into the tangent
bundle of $E$ or into the isometry group of $E$. It goes without saying that,
when $X$ has $x$ as the origin, $Xf^{\prime}$ is a linear map of the tangent space $M_{x}$ to
$M$ at $x$ into the tangent space $E_{f^{(x)}}$ for any $x$ in $ j\psi$, and that $Xf=f^{\prime}X$.

It is easy to see that $(Xf^{\prime})Y$ is normal to $f(M)$ for any vectors $X$ and $Y$

at a point $x$. Thus $(Xf^{\prime})Y$ is a linear combination of the normal vectors

$(Xf^{\prime})Y=\sum_{<1\leqq\iota_{\Rightarrow}a}H_{i}1t_{\ell}$
,


