Some results on arithmetic functions.

By S. A. AMITSUR

(Received April 21, 1959)

1. Introduction. Let $g(n)$ be an arithmetic function defined for all positive integers *n*. Following an idea of Yamamoto, we make correspond to $g(n)$ a linear operator $I_g(f)$ acting on the space of all functions $f(x)(x\geq 1)$, defined by

(1)
$$
(I_g f)(x) = \sum_{n \leq x} \frac{g(n)}{n} f\left(\frac{x}{n}\right).
$$

The linear operators I_{g} were dealt with extensively in a previous paper ([1]), with the aid of a symbolic calculus introduced and used to approximate I_{g} for functions $f=f(\log x)$ which are polynomials in $\log x$.

Let $G(D)=\sum_{\nu=-p}^{\infty}g_{\nu}D^{\nu}$ be a power series in a symbol D with only a finite number of negative powers of D . The symbol D stands for the formal derivative $d/d\log x$. That is we set:

$$
D^k \log^n x = \frac{n!}{(n-k)!} \log^{n-k} x \text{ for } n \ge k
$$

and all positive and non-positive values of k, $D^{k}\log^{n}x=0$ for $n < k$.

The notation $I_{g}=G(D)+O(\varphi_{n})$ serves in [1] to denote that $I_{g}\log^{n}x G(D)\log^{n}x=O(\varphi_{n}(x)),$ where $\varphi_{n}(x), n\geq 0$, are non-negative functions. In a more explicit form, the last relation states that

(2)
$$
I_g \log^n x - G(D) \log^n x = \sum_{\nu \leq x} \frac{g(\nu)}{\nu} \log^n \frac{x}{\nu} - \sum_{i=-p}^n \frac{n!}{(n-i)!} g_i \log^{n-i} x = O(\varphi_n).
$$

It is known that $I_{g}I_{h}=I_{k}$ where $k=g*h$ is the convolution of g and h , i.e. $k(n)=\sum_{d|n}g(d)h(n/d)$. Let $I_{g}=G(D)+O(\varphi_{n})$ and $I_{h}=H(D)+O(\psi_{n})$ then it was shown in [1, Theorem 4.1] that $I_{g}I_{h}=G(D)H(D)+O(\rho_{n})$ and a certain bound for ρ_{n} was given, which was not symmetric in g and h; furthermore, an important drawback of that theorem was that $G(D)H(D)f$ had always to be computed as $G(D)\Gamma H(D)f$ and not by the ordinary product of the power series $\lceil G(D)H(D) \rceil$. This fact caused some complications in the computation in the proof of Theorem 9.1 of [1].