Some results on arithmetic functions.

By S. A. AMITSUR

(Received April 21, 1959)

1. Introduction. Let g(n) be an arithmetic function defined for all positive integers *n*. Following an idea of Yamamoto, we make correspond to g(n) a linear operator $I_g(f)$ acting on the space of all functions f(x) $(x \ge 1)$, defined by

(1)
$$(I_g f)(x) = \sum_{n \leq x} \frac{g(n)}{n} f\left(\frac{x}{n}\right).$$

The linear operators I_g were dealt with extensively in a previous paper ([1]), with the aid of a symbolic calculus introduced and used to approximate I_g for functions $f = f(\log x)$ which are polynomials in $\log x$.

Let $G(D) = \sum_{\nu=-p}^{\infty} g_{\nu}D^{\nu}$ be a power series in a symbol D with only a finite number of negative powers of D. The symbol D stands for the formal derivative $d/d \log x$. That is we set:

$$D^k \log^n x = \frac{n!}{(n-k)!} \log^{n-k} x \text{ for } n \ge k$$

and all positive and non-positive values of k, $D^k \log^n x = 0$ for n < k.

The notation $I_g = G(D) + O(\varphi_n)$ serves in [1] to denote that $I_g \log^n x - G(D) \log^n x = O(\varphi_n(x))$, where $\varphi_n(x)$, $n \ge 0$, are non-negative functions. In a more explicit form, the last relation states that

(2)
$$I_g \log^n x - G(D) \log^n x = \sum_{\nu \le x} \frac{g(\nu)}{\nu} \log^n \frac{x}{\nu} - \sum_{i=-p}^n \frac{n!}{(n-i)!} g_i \log^{n-i} x = O(\varphi_n).$$

It is known that $I_gI_h = I_k$ where k = g * h is the convolution of g and h, i.e. $k(n) = \sum_{d|n} g(d)h(n/d)$. Let $I_g = G(D) + O(\varphi_n)$ and $I_h = H(D) + O(\psi_n)$ then it was shown in [1, Theorem 4.1] that $I_gI_h = G(D)H(D) + O(\rho_n)$ and a certain bound for ρ_n was given, which was not symmetric in g and h; furthermore, an important drawback of that theorem was that G(D)H(D)f had always to be computed as G(D)[H(D)f] and not by the ordinary product of the power series [G(D)H(D)]f. This fact caused some complications in the computation in the proof of Theorem 9.1 of [1].