Journal of the Mathematical Society of Japan

Compact homogeneous spaces and the first Betti number.

By Tadashi NAGANO

(Received April 25, 1958)

1. Introduction. The main purpose of this note is to prove:

THEOREM 1. Let M be an n-dimensional homogeneous space G/H under a compact connected Lie group G. Then we have

 $\dim S(p) + B_1 = n,$

where S(p) is the orbit of an arbitrary point p in M under the maximal (connected) semi-simple subgroup S of G and B_1 denotes the first Betti number of M.

Note that H is not assumed to be connected. In the sequel we shall preserve these hypotheses and notations.

COROLLARY 1. If G is semi-simple, then $B_1=0$ (T. Frankel [3]). The converse is not true (even if G is effective), but we have

COROLLARY 2. If $B_1=0$, G contains a semi-simple subgroup which is transitive on M (H. C. Wang [10]).

COROLLARY 3. If $n \leq B_1$, then M is homeomorphic to the torus and, furthermore if G is effective, G is an n-dimensional toral group (D. Montgomery and H. Samelson [6] and A. Borel [1]).

COROLLARY 4. Any finite covering space of M has the same first Betti number as M.

In course of the proof of the above theorem, we shall establish:

THEOREM 2. M admits a G-invariant Riemannian metric such that for a vector field u the following three conditions are equivalent: 1) u is parallel, 2) u is harmonic, and 3) u belongs to the center C^{L} of G^{L} of G and u is orthogonal to S(p) at p.

COROLLARY 5. A vector field $u(\neq 0)$ on the homogeneous space M is parallel with respect to some G-invariant Riemannian metric if and only if u belongs to the centralizer of G^{L} in the Killing algebra of M with some G-invariant Riemannian metric and u(p) is not tangent to S(p).

COROLLARY 6. Let h be a vector field on M harmonic with respect to a G-invariant Riemannian metric g. Then h is parallel with respect to some G-invariant metric, if and only if h belongs to the Lie algebra K^L of a compact Lie transformation group K of M. If in particular h is Killing with respect to some metric, h is parallel with respect to some (other) metric.

If a vector field u satisfies 1) in Theorem 2, clearly there exists, for any