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Compact homogeneous spaces and the first Betti number.
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1. Introduction. The main purpose of this note is to prove:
THEOREM 1. Let $M$ be an n-dimensional homogeneous space $G/H$ under a

compact connected Lie group G. Then we have

$\dim S(p)+B_{1}=n$ ,

where $s(p)$ is the orbit of an arbitrary point $p$ in $M$ under the maximal (con-

nected) semi-simple subgroup $S$ of $G$ and $B_{1}$ denotes the first Betti number of $M$.
Note that $H$ is not assumed to be connected. In the sequel we shall

preserve these hypotheses and notations.
COROLLARY 1. If $G$ is semi-simple, then $B_{1}=0$ (T. Frankel [3]). The

converse is not true (even if $G$ is effective), but we have
COROLLARY 2. If $B_{1}=0,$ $G$ contains a semi-simple subgroup which is transi-

tive on $ j\psi$ (H. C. Wang [10]).

COROLLARY 3. If $n\leqq B_{1}$ , then $IM$ is homeomorphic to the torus and, further-
more if $G$ is effective, $G$ is an n-dimensional toral group (D. Montgomery and
H. Samelson [6] and A. Borel [1]).

COROLLARY 4. Any finite covering space of $M$ has the same first Betti
number as $M$.

In course of the proof of the above theorem, we shall establish:
THEOREM 2. $M$ admits a $G- inva\gamma iant$ Riemannian metric such that for a

vector field $u$ the following three conditions are equivalent: 1) $u$ is parallel, 2) $u$

is harmonic, and 3) $u$ belongs to the center $C^{L}$ of $G^{L}$ of $G$ and $u$ is orthogonal
to $S(p)$ at $p$ .

COROLLARY 5. A vector field $u(\neq 0)$ on the homogeneous space $M$ is parallel
with respect to some G-invariant Riemannian metric if and only if $u$ belongs to
the centralizer of $G^{L}$ in the Killing algebra of $1\psi$ with some G-invariant Rieman-
nian metric and $u(p)$ is not tangent to $s(p)$ .

COROLLARY 6. Let $h$ be a vector field on $M$ harmonic with respect to a
G-invariant Riemannian metric $g$. Then $h$ is parallel zvith respect to some G-
invariant metric, if and only if $h$ belongs to the Lie algebra $K^{L}$ of a compact
Lie transformation group $K$ of M. If in particular $h$ is Killing with respect to
some metric, $h$ is parallel with respect to some (other) metric.

If a vector field $ t\ell$ satisfies 1) in Theorem 2, clearly there exists, for any


