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1. Preliminaries.

Let $a,$
$b$ be two points in $|z|<1$ , then the hyperbolic metric $[a, b]$ is

defined by

(1) $[a, b]=|1-\frac{b}{a}ba---|$ .

Let $E$ be a bounded closed set, contained entirely in $|z|<1$ , such that $E$ and
$|z|=1$ bound a connected domain $D_{0}$ .

By introducing the hyperbolic metric (1) in $|z|<1$ , Tsuji ([15], [161)

defined a potential of positive mass distribution on $E$ and a hyperbolic trans-
finite diameter of $E$, and obtained some results analogous to those of Frostman
[2] and dc la Vallee-Poussin [17] in the theory of logarithmic potential and
also to those of P\’olya and Szcgo [12] in the theory of transfinite diameter.

We summarize the results obtained by Tsuji as follows:
(i) Let $d\nu(a)\geqq 0$ be a positive mass distributed on $E$ of total mass 1 and

consider

(2) $I(\nu)=\int\int_{E}\log[a, b]^{-d\nu(a)d\nu(b)}$ $\nu(E)=1$ ,1

(3) $V=\inf_{\nu}I(\nu)$ , $\infty\geqq V>0$ .

Then there exists $/\nu\geqq 0_{y}$ such that

(4) $I(l^{l})=\int\int_{E}\log[\overline{a}^{1}b\overline{]}d\mu(a)d_{l}4(b)=V,$ $\mu(E)=1$ .

(ii) For the potential of the mass distribution $d\mu(a)$ on $E$

(5) $u(z)=\int_{E}\log[z^{1}a]-,-d\mu(a)=\int_{F_{1}}\log|_{\frac{1-}{z-}}^{\overline{a}_{a}z_{-}}|d\mu(a)$ ,

we have, similarly to the result of Frostman,

(6) $\sup_{|z|<1}\{u(z)\}=V$

and
(6) $u(z)=V$ on $E$ ,


