Journal of the Mathematical Society of Japan

On linear Lie algebras I.

By Yosio MUTŌ

(Received Nov. 5, 1957)

Introduction

Let $\mathfrak{gl}(\mathbb{R}^n)$ be the set of all linear transformations X of an *n*-dimensional linear space \mathbb{R}^n over the field of real numbers, equipped with the ordinary law of addition X+X' and the law of composition [X, Y]=XY-YX. The purpose of the present paper, which is considered as the first of the series of papers pursuing the same purpose, is to deal with a method of studying some properties of *r*-dimensional subalgebras \mathfrak{g} of this general linear Lie algebra $\mathfrak{gl}(\mathbb{R}^n)$.

If we take a base S composed of a set of *n* linearly independent vectors e_{λ} ($\lambda = 1, \dots, n$) of \mathbb{R}^n , then a subalgebra g is represented by an *r*-dimensional linear subspace in an n^2 -dimensional linear space spanned by all matrices of degree *n*. This subspace will be denoted by $\Re(\mathfrak{g}, S)$, or by \Re if there is no possibility of confusion. If we take another base $\widetilde{S}(\tilde{e}_{\lambda})$ such that

$$\hat{S} = AS, \quad \tilde{e}_{\lambda} = A^{\alpha}_{\lambda} e_{\alpha},$$

then a matrix K of \Re representing an element of g is transformed into $\widetilde{K}=A^{-1}KA$. This fact will be denoted by

$$\Re(\mathfrak{g}, AS) = A^{-1} \Re(\mathfrak{g}, S) A.$$

The set of matrices $(V_{\cdot\mu}^{\lambda})$ where $V_{\cdot\mu}^{\lambda}$ satisfy

$$K^{\lambda}_{\bullet\mu}V^{\mu}_{\bullet\lambda}=0$$

for all matrices $(K^{1}_{,\mu})$ of \Re spans an $(n^{2}-r)$ -dimensional linear subspace in an n^{2} -dimensional linear space spanned by all matrices of degree n. This subspace will be denoted by $\mathfrak{B}(\mathfrak{g}, S)$ or by \mathfrak{B} for short. The law of transformation is

$$\mathfrak{V}(\mathfrak{g}, AS) = A^{-1}\mathfrak{V}(\mathfrak{g}, S)A$$

 \mathfrak{V} may be considered to represent a set of transformations of \mathbb{R}^n which will be denoted by $\mathfrak{t}(\mathfrak{g})$ or by t for short.

If we take a suitable base S in \mathbb{R}^n and moreover, if we take a suitable base M in $\mathfrak{V}(\mathfrak{g}, S)$

$$M: V_{A} \quad (A=1,\dots,m; m=n^{2}-r),$$