Journal of the Mathematical Society of Japan Vol. 10, No. 1, January, ¹⁹⁵⁸

Exact sequences in the Steenrod algebra.

By Aiko NEGISHI

(Received Nov. 2, 1957)

J. P. Serre [1] has proved that the cohomology algebra $H^{*}(Z_{2} ; q, Z_{2})$ of the Eilenberg-MacLane complex $K(Z_{2}, q)$ with Z_{2} coefficients is a polynomial algebra generated by $Sq^{I}(u_{q})$, where u_{q} is the generator of $H^{q}(Z_{2} ; q, Z_{2})$ and I runs over the admissible sequences with excess $\langle q, Sq^{\mathcal{I}} \rangle$ being the iterated Steenrod squaring operations. He has proved thereby that $H^{n+q}(Z_{2}; q, Z_{2})$ remains 'stable' for $q\!>\!n,$ and put $A^{n}(Z_{2}, Z_{2})\!=\!H^{n+q}(Z_{2} ; q, Z_{2})$. The graded algebra $\sum_{n=0}^{\infty}A^{n}(Z_{2}, Z_{2})$ is denoted by $A^{\ast}(Z_{2}, Z_{2})$ and is called the Steenrod algebra (Cf. Adem $[2]$, $[3]$). Following Adem $[2]$, we shall denote the generators of $A^{\ast}(Z_{2}, Z_{2})$ with Sq^t instead of Sq^t(u_q). The multiplication between these generators is determined by Adem's relations (Adem [2], [3]).

(1)
$$
\operatorname{Sq}^{\alpha} \operatorname{Sq}^{\beta} = \sum_{t=0}^{\lfloor \alpha/2 \rfloor} {\binom{\beta - t - 1}{\alpha - 2t}} \operatorname{Sq}^{\alpha + \beta - t} \operatorname{Sq}^t \mod 2, \quad 0 \leq \alpha < 2\beta.
$$

Let I_{0} be any fixed sequence of integers. We can define a homomorphism $\alpha_{I_{0}}^{\prime}$ of $A^{\ast}(Z_{2}, Z_{2})$ into itself by $\alpha_{I_{0}}^{\prime}$ Sq^{I}=Sq^I Sq^I, and another homomorphism $\alpha_{I_{0}}^{\prime\prime}$ by $\alpha_{I_{0}}^{\prime\prime}Sq^{I}=Sq^{I}Sq^{I_{0}}.$ If M is a certain fixed submodule of $A^{\ast}(Z_{2}, Z_{2})$, then $\operatorname{Sq}^{I}\rightarrow\alpha_{I_{0}}^{\prime}\operatorname{Sq}^{I}$ mod M or $\alpha_{I_{0}}^{\prime\prime}\operatorname{Sq}^{I}$ mod M define respectively cohomology operations. These operations are of interest in view of topological applications. (Cf. Cartan [4], Serre [1]).

In this paper, we consider the operator α_{n}^{\prime} defined by $\alpha_{n}^{\prime}Sq^{\prime}=Sq^{2^{n}}Sq^{\prime}$ $(n=0, 1, \ldots)$. We denote the module generated by the sums of the images of $\alpha_{i}^{\prime}(i=0,1, \dots, n)$ with M_{n} for $n\geq 0$, and put $M_{-2}=M_{-1}=0$. Obviously we have $M_{n}\supset M_{n-1}$. We shall give explicitly the generators of M_{n} mod M_{n-1} (Theorem 1) and those of $A^{\ast}(Z_{2}, Z_{2})$ mod M_{n} (Corollary of Theorem 1), and apply this to prove the following result. We can define α_{n+3} and β_{n+3} for $n\geq-2$ so that the following diagram is commutative, where p_{n} is the natural homomorphism $A^{\ast}(Z_{2}, Z_{2})\rightarrow A^{\ast}(Z_{2}, Z_{2})/M_{n}$ for $n\geq 0$, and $p_{-2}=p_{-1}=id$.

$$
A^*(Z_2, Z_2) \xrightarrow{\alpha_{n+3}} A^*(Z_2, Z_2) \xrightarrow{\alpha_{n+3}} A^*(Z_2, Z_2)
$$

\n
$$
p_n \downarrow \qquad p_{n+1} \downarrow \qquad p_{n+2} \downarrow
$$

\n
$$
A^*(Z_2, Z_2)/M_n \xrightarrow{\beta_{n+3}} A^*(Z_2, Z_2)/M_{n+1} \xrightarrow{\beta_{n+3}} A^*(Z_2, Z_2)/M_{n+2}.
$$