Journal of the Mathematical Society of Japan

Exact sequences in the Steenrod algebra.

By Aiko NEGISHI

(Received Nov. 2, 1957)

J. P. Serre [1] has proved that the cohomology algebra $H^*(Z_2; q, Z_2)$ of the Eilenberg-MacLane complex $K(Z_2, q)$ with Z_2 coefficients is a polynomial algebra generated by $\operatorname{Sq}^I(u_q)$, where u_q is the generator of $H^q(Z_2; q, Z_2)$ and I runs over the admissible sequences with excess $\langle q, \operatorname{Sq}^I \rangle$ being the iterated Steenrod squaring operations. He has proved thereby that $H^{n+q}(Z_2; q, Z_2)$ remains 'stable' for q > n, and put $A^n(Z_2, Z_2) = H^{n+q}(Z_2; q, Z_2)$. The graded algebra $\sum_{n=0}^{\infty} A^n(Z_2, Z_2)$ is denoted by $A^*(Z_2, Z_2)$ and is called the *Steenrod algebra* (Cf. Adem [2], [3]). Following Adem [2], we shall denote the generators of $A^*(Z_2, Z_2)$ with Sq^I instead of $\operatorname{Sq}^I(u_q)$. The multiplication between these generators is determined by Adem's relations (Adem [2], [3]).

(1)
$$\operatorname{Sq}^{\alpha} \operatorname{Sq}^{\beta} = \sum_{t=0}^{\lfloor \alpha/2 \rfloor} {\beta - t - 1 \choose \alpha - 2t} \operatorname{Sq}^{\alpha + \beta - t} \operatorname{Sq}^{t} \mod 2, \quad 0 \leq \alpha < 2\beta.$$

Let I_0 be any fixed sequence of integers. We can define a homomorphism α'_{I_0} of $A^*(Z_2, Z_2)$ into itself by $\alpha'_{I_0} \operatorname{Sq}^I = \operatorname{Sq}^{I_0} \operatorname{Sq}^I$, and another homomorphism α'_{I_0} by $\alpha''_{I_0} \operatorname{Sq}^I = \operatorname{Sq}^I \operatorname{Sq}^{I_0}$. If M is a certain fixed submodule of $A^*(Z_2, Z_2)$, then $\operatorname{Sq}^I \to \alpha'_{I_0} \operatorname{Sq}^I \mod M$ or $\alpha''_{I_0} \operatorname{Sq}^I \mod M$ define respectively cohomology operations. These operations are of interest in view of topological applications. (Cf. Cartan [4], Serre [1]).

In this paper, we consider the operator α'_n defined by $\alpha'_n \operatorname{Sq}^I = \operatorname{Sq}^{2^n} \operatorname{Sq}^I$ $(n=0,1,\cdots)$. We denote the module generated by the sums of the images of α'_i $(i=0,1,\cdots,n)$ with M_n for $n \ge 0$, and put $M_{-2}=M_{-1}=0$. Obviously we have $M_n \supset M_{n-1}$. We shall give explicitly the generators of $M_n \mod M_{n-1}$ (Theorem 1) and those of $A^*(Z_2, Z_2) \mod M_n$ (Corollary of Theorem 1), and apply this to prove the following result. We can define α_{n+3} and β_{n+3} for $n \ge -2$ so that the following diagram is commutative, where p_n is the natural homomorphism $A^*(Z_2, Z_2) \rightarrow A^*(Z_2, Z_2)/M_n$ for $n \ge 0$, and $p_{-2}=p_{-1}=id$.

$$\begin{array}{cccc} A^{*}(Z_{2},Z_{2}) & \xrightarrow{\boldsymbol{\alpha}_{n+3}} & A^{*}(Z_{2},Z_{2}) & \xrightarrow{\boldsymbol{\alpha}_{n+3}} & A^{*}(Z_{2},Z_{2}) \\ & & & & \\ p_{n} \downarrow & & & \\ p_{n+1} \downarrow & & & \\ A^{*}(Z_{2},Z_{2})/M_{n} & \xrightarrow{\boldsymbol{\beta}_{n+3}} & A^{*}(Z_{2},Z_{2})/M_{n+1} \xrightarrow{\boldsymbol{\beta}_{n+3}} & A^{*}(Z_{2},Z_{2})/M_{n+2} \end{array}$$