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Exact sequences in the Steenrod algebra.
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J. P. Serre [1] has proved that the cohomology algebra $H^{\star}(Z_{2} ; q, Z_{2})$ of
the Eilenberg-MacLane complex $K(Z_{2}, q)$ with $Z_{2}$ coefficients is a polynomial
algebra generated by $Sq^{I}(u_{q})$ , where $u_{q}$ is the generator of $H^{q}(Z_{2} ; q, Z_{2})$ and
$I$ runs over the admissible sequences with excess $<q$ , Sq’ being the iterated
Steenrod squaring operations. He has proved thereby that $H^{n+q}(Z_{2} ; q, Z_{2})$

remains ‘ stable’ for $q>n$ , and put $A^{n}(Z_{2}, Z_{2})=H^{n+q}(Z_{2} ; q, Z_{2})$ . The graded

algebra $\sum_{n=0}^{\infty}A^{n}(Z_{2}, Z_{2})$ is denoted by $A^{\star}(Z_{2}, Z_{2})$ and is called the Steenrod

algebra (Cf. Adem [2], [3]). Following Adem [2], we shall denote the gener-
ators of $A^{\star}(Z_{2}, Z_{2})$ with Sq’ instead of $Sq^{I}(u_{q})$ . The multiplication between
these generators is determined by Adem’s relations (Adem [2], [3]).

(1) $Sq^{\alpha}Sq^{\beta}=\sum_{t=0}^{[\alpha/2]}\left(\begin{array}{l}-\beta t-1\\-\alpha 2t\end{array}\right)Sq^{\alpha+\beta-t}Sq^{t}$ $mod 2$ , $ 0\leqq\alpha<2\beta$ .

Let $I_{0}$ be any fixed sequence of integers. We can define a homomorphism
$\alpha_{I_{0}}^{\prime}$ of $A^{\star}(Z_{2}, Z_{2})$ into itself by $\alpha_{I_{0}}^{\prime}Sq^{I}=Sq^{I_{0}}$ Sq’, and another homomorphism
$\alpha_{I_{0}}^{\prime\prime}$ by $\alpha_{I_{0}}^{\prime\prime}Sq^{I}=Sq^{I}Sq^{I_{0}}$ . If $M$ is a certain fixed submodule of $A^{\star}(Z_{2}, Z_{2})$ , then
$Sq^{I}\rightarrow\alpha_{I_{0}}^{\prime}Sq^{I}mod M$ or $\alpha_{I_{0}}^{\prime\prime}$ Sq’ $mod M$ define respectively cohomology opera-
tions. These operations are of interest in view of topological applications.
(Cf. Cartan [4], Serre [1]).

In this paper, we consider the operator $\alpha_{n}^{\prime}$ defined by $\alpha_{n}^{\prime}Sq^{I}=Sq^{2^{n}}Sq^{I}$

$(n=0,1, \cdots)$ . We denote the module generated by the sums of the images
of $\alpha_{i}^{\prime}(i=0,1, \cdots, n)$ with $M_{n}$ for $n\geqq 0$ , and put $M_{-2}=M_{-1}=0$ . Obviously we
have $M_{n}\supset M_{n-1}$ . We shall give explicitly the generators of $M_{n}mod M_{n-1}$

(Theorem 1) and those of $A^{\star}(Z_{2}, Z_{2})mod M_{n}$ (Corollary of Theorem 1), and
apply this to prove the following result. We can define $\alpha_{n+3}$ and $\beta_{n+3}$ for
$n\geqq-2$ so that the following diagram is commutative, where $p_{n}$ is the
natural homomorphism $A^{\star}(Z_{2}, Z_{2})\rightarrow A^{\star}(Z_{2}, Z_{2})/M_{n}$ for $n\geqq 0$ , and $p_{-2}=p_{-1}=id$.

$\alpha_{n+3}^{\prime}$ $\alpha_{n+3}^{\prime}$

$A^{\star}(Z_{2}, Z_{2})$ $\rightarrow$ $A^{\star}(Z_{2}, Z_{2})$ $\rightarrow$ $A^{\star}(Z_{2}, Z_{2})$

$ p_{n}\downarrow$ $ p_{n+1}\downarrow$ $ p_{n+2}\downarrow$

$A^{\star}(Z_{2}, Z_{2})/M_{n}$ $\rightarrow$ A$(Z_{2}, Z_{2})/M_{n+1}\beta_{n+3}\rightarrow^{\beta_{n+3}}A^{\star}(Z_{2}, Z_{2})/M_{n+2}$ .


