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On the number of prime factors of integers II.
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1. Introduction.

Let $P$ be the set of all rational prime numbers, and $\{\pi_{1},\cdots, \pi_{k}\}$ a
family of subsets of $P$ satisfying the following conditions:

$(C_{1})$ The sets $\pi_{1},\cdots,$ $\pi_{k}$ are mutually disjoint;

$(C_{2})$ The series $\sum\underline{1}(i=1,\cdots, k)$ are divergent.
$p\in\pi_{j}p$

We need not suppose $\pi_{1}\cup\cdots\cup\pi_{k}=P$ for the following development.
We shall suppose, except for in the last section, the family $\{\pi_{1},\cdots, \pi_{k}\}$

as given once for all. The letter $i$ will always represent one of the
integers $1,\cdots,$ $k$.

We denote by $\omega_{i}(n)$ the number of distinct prime factors of a
positive integer $n$ which belong to the set $\pi_{j}$ ;

$\omega_{i}(n)=\sum_{p1n,p\in\pi_{i}}1$
.

We also put

$y_{j}(n)=\sum_{p\leqq n,p\in\pi_{j}}\frac{1}{p}$ ,

and denote by $n_{0}$ the least positive integer for which $y_{i}(n_{0})>0(i=1$ ,
..., k $)^{}$ We further put, for $n\geqq n_{0}$ ,

$u_{j}(n)=\frac{\omega_{i}(n)-y_{i}(n)}{\sqrt{y_{i}(n)}}$ .

Then, to each integer $n\geqq n_{0}$ , there corresponds a point $U(n)=(u_{1}(n)$ ,
$u_{k}(n))$ in the space $R^{k}$ of $k$ dimensions. Let $E$ be a Jordan-

measurable set, bounded or unbounded, in $R^{k}$, and let $A(x;E)$ denote
the number of integers $n,$ $n_{0}\leqq n\leqq x$, for which the corresponding
points $U(n)$ belong to the set $E$.

1) When it is desirable to emphasize that we are considering the relevant
formulas for $i=1,\cdots,$ $k$ simultaneously, we add the expression ‘

$(i=1,\cdots, k)$ ’ to indicate
the simultaneou@nes@,


