Some theorems in dimension theory for non-separable spaces.

By Keiô NAGAMI

(Received Feb. 17, 1956)

This paper provides some theorems in dimension theory for nonseparable spaces. Let R be a topological space, dim R the covering dimension of R, ind R the so-called "small" inductive dimension of Rdefined by means of boundaries of neighborhoods of points, and Ind Rthe so-called "large" inductive dimension of R defined by means of boundaries of neighborhoods of closed sets. (Cf. [14]. In the notations of [2], Appendix, p. 153, we have ind $R=d_1(R)$, Ind $R=d_2(R)$.) It is to be noted that when R is normal, dim $R \leq n$ is equivalent to the following condition: For any closed subset C of R and for any mapping (=continuous transformation) f from C into an n-sphere there exists a continuous extension g of f defined on the whole space R.

In §1 we shall give the sum theorem of covering dimension for metric spaces which is a generalization of the known. In §2 we shall study closed mappings which lower dimension and related problems. In §3 we shall give a new definition of dimension-kernel and shall study some properties concerning it.

§ 1. Sum theorem of covering dimension.

Let R be a topological space and $\mathfrak{U} = \{U_{\alpha}; \alpha \in A\}$ be a collection of subsets of R. Then $\mathfrak{U} \cap S$, S being a subset of R, stands for $\{U_{\alpha} \cap S; \alpha \in A\}$.

LEMMA 1. Let S be a closed subset of a normal space R and $\mathfrak{U} = \{U_{\alpha}; \alpha \in A\}$ be a finite open covering of S whose elements are F_{σ} . Then there exists a finite open collection $\mathfrak{V} = \{V_{\alpha}; \alpha \in A\}$ of R whose elements are F_{σ} such that the order of \mathfrak{V} is not greater than that of \mathfrak{U} and $V_{\alpha} \cap S = U_{\alpha}$ for every $\alpha \in A$.

LEMMA 2. An F_{σ} -subset of a normal space is also normal as a relative space.