On the Poisson distribution.

By Hisao WATANABE

(Receivd Nov. 25, 1955)

Let $\dots, x_{-1}, x_0, x_1, \dots$ be the points on the real line such that $\dots x_{-1} < x_0 < x_1 \dots (x_0 \equiv 0)$. Then if $\{x_j - x_{j-1}\}$ $(j=0, 1, 2, \dots)$ are independent random variables with common distribution function F(x), where F(x) is the distribution function of a non-negative random variable with F(-0) = 0, $F(\infty) = 1$, we shall say that these points are distributed at random according to F(x).

Now consider a system of particles $P_n(n=0,\pm 1,\pm 2,\cdots)$ which start from the above stated random positions $x_n(n=0,\pm 1,\pm 2,\cdots)$. When we denote by $X_n(t)$ the displacement of the *n*-th particle P_n up to the time t, the coordinate $Y_n(t)$ of the particle at the time t is

$$Y_n(t) = x_n + X_n(t)$$
, $X_n(0) = 0$, $t \ge 0$.

In the following, let us confine ourselves to the discrete time parameter $t=0,1,2,\cdots$, and we shall impose the following conditions on the movement of the particles. The random variables $X_n(t)-X_n(t-1)$ are mutually independent for each $n,t,-\infty< n<\infty$, $t\geq 0$, and obey the same distribution function G(x) for all n,t, moreover, for each t>0 the classes of random variables

$$\{X_n(t), n=0, \pm 1, \pm 2, \cdots\}$$
 $\{x_n, n=0, \pm 1, \pm 2, \cdots\}$

are mutually independent.

By the Fourier analytical method [2], Prof. Maruyama [3] investigated the limiting distribution of the number $N_I(t)$ of particles lying in an interval I=[a,b] at t under the condition that G(x) is a non-lattice distribution function. In this note, we shall discuss the problem when G(x) is a lattice distribution function with maximum span d>0.

THEOREM. If
$$0 < m = \int_{-\infty}^{+\infty} x dF(x) < \infty$$
, then we have