Journal of the Mathematical Society of Japan

A remark on Hilbert's Nullstellensatz.

By Harley FLANDERS

(Received Nov. 13, 1953)

In [3] Zariski gave a proof of the Nullstellensatz based on the following lemma.

Let k and K be fields such that $K = k[x_1, \dots, x_n]$. Then K is a finite extension of k.

Besides the proof of this lemma that Zariski gave, there is another proof in Artin and Tate [1] and a further proof is indicated in the exercises in Bourbaki [2, p. 87, exercise 4 and p. 106, exercise 12]. It is our purpose to give still another proof of this lemma.

Our proof is based on the following well-known results: (1) If o is an integral domain with quotient field k, if [K:k]=n, and if O is the set of all elements of K which are integral over o, then O is an integral domain and each element of K can be written in the form A/a with A in O and a in o. (2) The field norm $N_{K/k}$ is multiplicative. (3) If A is in O and o is integrally closed, then $N_{K/k}A$ is in o.

Here is the proof. If each x_j is algebraic over k, we are finished. The case in which x_1, \dots, x_n are independent transcendentals is clearly impossible since the polynomial ring $k[x_1, \dots, x_n]$ is not a field. If neither of these cases prevails, then we may assume that x_1, \dots, x_r form a transcendence basis of K over k for some r with $1 \leq r < n$, set $F = k(x_1, \dots, x_r)$, and have K a finite extension of F, with say [K:F] = m. Let $o = k[x_1, \dots, x_r]$ which is isomorphic to the polynomial ring $k[X_1, \dots, X_r]$ over k. By (1) above, there is an element $f=f(x_1, \dots, x_r)$ in o such that for each j, $j=r+1, \dots, n$, $z_j=fx_j$ is integral over o. We select a non-constant polynomial $g(X_1, \dots, X_r)$ which is relatively prime to $f(X_1, \dots, X_r)$ (for example $g(X) = X_1 f(X) + 1$) and consider $w=1/g(x_1,\cdots,x_r)$. Since w is in $K=k[x_1,\cdots,x_n]$, there is a polynomial H(X) in $k[X_1, \dots, X_n]$ such that $w = H(x_1, \dots, x_n)$. Multiplying this last relation with a sufficiently high power of f yields a relation of the form $f^s w = H_1(x_1, \dots, x_r, z_{r+1}, \dots, z_n)$, where $H_1(X_1, \dots, X_r, Z_{r+1}, \dots, Z_n)$ is in