Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

Myrberg's approximation theorem on Fuchsian groups.

By Masatsugu Tsuji

(Received September 10, 1952)

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain. We assume that D_0 has a finite number of sides, such that D_0 lies entirely in |z| < 1, or has a finite number of parabolic vertices on |z| = 1. It can be proved that this is equivalent to that the non-euclidean area of D_0 is finite¹. Then Myrberg² proved the following approximation theorem.

THEOREM. There exists a set E of measure 2π on |z|=1, which satisfies the following condition. Let $L=L(\theta)$ be a diameter of |z|=1through $e^{i\theta}$ and L_{ν} ($\nu=0, 1, 2, \cdots$) be its equivalents by G. Let C be any orthogonal circle to |z|=1. If $e^{i\theta} \in E$, then we can find ν_k , such that $L_{\nu_k} \to C(k \to \infty)$.

We shall prove this theorem simply by means of Hopf's ergodic theorem.

PROOF. We denote an orthogonal circle to |z|=1, whose end points on |z|=1 are $e^{i\theta}$, $e^{i\varphi}$ by $C(\theta, \varphi)$. Now (θ, φ) can be considered as a point on a torus $\mathcal{Q}: 0 \leq \theta \leq 2\pi, 0 \leq \varphi \leq 2\pi$ and the measure mE of a measurable set E on \mathcal{Q} is defined by

$$mE = \iint_E d\theta \, d\varphi, \tag{1}$$

so that $m \mathcal{Q} = 4\pi^2$.

¹⁾ C. L. Siegel: Some remarks on discontinuous groups. Ann. of Math. 46 (1945). M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 20 (1952).

²⁾ P. J. Myrberg: Ein Approximationssatz für die Fuchsschen Gruppen. Acta Math. 57 (1931).