On the Algebraic Structure of Group Rings

Richard Brauer

§ 1. Introduction

1. Let \mathfrak{G} be a group of finite order g. If K is any given field of characteristic 0, the group ring Γ of \mathfrak{G} with regard to K is a semisimple algebra. By Wedderburn's theorems, Γ is a direct sum of simple algebras A_{i} ;

$$\Gamma = A_1 \oplus A_2 \oplus \cdots \oplus A_s.$$

Each A_i is isomorphic to a complete matric algebra of a certain degree q_i over a division algebra Δ_i ;

$$\mathsf{A}_{i} \cong [A_{i}]_{q_{i}}.$$

The center Z_i of A_i may also be considered as the center of Δ_i . It is an extension field of finite degree r_i over K. Since Δ_i then is a central simple algebra over Z_i , its rank over Z_i is the square of a natural integer m_i . Then A_i has the rank $r_iq_i^2m_i^2$ over K. We shall call the numbers m_i the Schur indices of \mathfrak{G} , since they first occurred in the work of I. Schur on representations of \mathfrak{G} by linear transformations.

2. The theory of representations of groups of finite order was developed originally by *Frobenius* for the case that the coefficients of the representing linear transformations belong to an algebraically closed field of characteristic 0. The case of an arbitrary field K of characteristic 0 was considered by *I. Schur.* We quote the main results.

Every representation of \mathfrak{G} is completely reducible. Two representations of \mathfrak{G} are similar, if and only if they have the same character. It is then sufficient to consider the irreducible representations of \mathfrak{G} in K and their characters. These irreducible representations $\mathfrak{T}_1, \mathfrak{T}_2, \dots, \mathfrak{T}_s$ are in one-to-one correspondence to the simple algebras A_1, A_2, \dots, A_s in (1).

If \overline{K} is the algebraic closure of K, then \mathfrak{T}_i breaks up in \overline{K} into r_i

¹⁾ Schur [1], [2]. The connections with the theory of algebras are given in Brauer [1], [2]. See also Albert [1]; van der Waerden [1], Chapter XVII, [2]; Weyl [1], Chapters III and X.