Journal of the Mathematical Society of Japan Vol. 3, No. 1, May, 1951.

Affine and Projective Geometries of System of Hypersurfaces

Kentaro YANO and Hitosi HIRAMATU

§ 1. Introduction. J. Douglas $[1]^*$ studied affine and projective geometries of a space of K-spreads, K-spreads being given by a system of partial differential equations of the form

$$\frac{\partial^2 x^i}{\partial u^{\beta} \partial u^{\gamma}} + H^i_{\beta\gamma}(x; p) = 0, \qquad \left(p^i_{\alpha} = \frac{\partial x^i}{\partial u^{\alpha}} \right), \qquad (1 \cdot 1)$$

(*i*, *j*, *k*, = 1, 2,, *N*; *a*, *β*, *γ*, = 1, 2,, *K*)

where $H_{\beta\gamma}^{i} = H_{\gamma\beta}^{i}$ are homogeneous function system of p with respect to the lower indices β and γ .

The problem to determine a privileged projective connection with respect to which the system of K-dimensional flat subspaces coincides exactly with that of K-spreads given by $(1 \cdot 1)$ was studied by S. S. Chern [3], Chih-Ta Yen [6] and the present authors [4], [5].

In a space of K-spreads, we consider that the elements of the space are the points and the K-dimensional linear spaces at each point. The point is represented by its coordinates (\dot{x}^i) and the K-dimensional linear space by K linearly independent contravariant vectors (p_a^i) contained in it. But, in a space of (n-1)-spreads, the hyperplane element may be represented by a covariant vector (n_i) . Thus the geometry of (n-1)spreads may be studied by a method some what different from the general one. The case of (n-1)-spreads was once treated by M. Hachtroudi [2], but we shall retake this case and study it by a method shown in [5].

Suppose that there be given, in an N-dimensional space X_N referred to a coordinate system (x^i) , a system of hypersurfaces in such a way that there exists one and only one hypersurface passing through N points given in general position, and belonging to the system. Such a system of hypersurfaces is given by a finite equation of the form

$$f(x^{1}, x^{2}, \dots, x^{N}; a^{1}, a^{2}, \dots, a^{N}) = 0, \qquad (1 \cdot 2)$$

* See the Bibliography at the end of the paper.