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Affine and Projective Geometries of System of Hypersurfaces

Kentaro YANO and Hitosi HIRAMATU

\S 1. Introduction. J. Douglas $[1]^{*}$ studied affine and projective geome-
tlies of a space of K-spreads, K-spreads $b\vee ing$ given by a system of partial
differential equations of the form

$\frac{\partial^{o}\sim x^{i}}{\partial ll^{\beta}\partial ll^{\gamma}}+H_{p\gamma}^{i}(x;p)=0$ , $(p_{\alpha}^{i}=\frac{\partial x^{i}}{\partial ll^{\alpha}})$ , $(1 \cdot 1)$

$(i,j, k, \ldots\ldots=1, 2, 1V;a, \beta, \gamma, =1, 2, I\zeta)$

where $H_{\beta\gamma}^{l}=H_{\gamma}^{i}$ , are homogeneotis function system of $p$ with respect to
the lowcr indices $\beta$ and $\gamma$ .

The problem to determine a privileged projective connection with respect
to which the system of K-dimensional flat subspaces coincides exactly $\iota v|th$

that of $K- s_{P^{1}}$ eads give $n$ by (1.1) was studied by S. S. Chern [3], Chih-Ta
Yen [6] and the $p_{\perp}\cdot esent$ authors [4], $[\prime 5]$ .

I $\iota\prime l$ a space of K-spreads, we consider that the elements of the space
are the points and the K-dimensional linear spaces at each point. The
point is represented by its cooldinates $(i\cdot)$ and the K-dim2nsiona1 linear
space by $K$ linearly independcnt contravariant vectors $(f_{\alpha}^{i})$ contained $i\iota$

it. But, in a space of $(n-1)- s_{I}Jle_{\iota})ds$ , the hypeiplane clem-nt m-y be
represented by a $covali_{\epsilon!}\backslash nt$ vector $(\iota/i)$ . $Th\iota!s$ the gcometry of $(n-1)-$

spreads miy be studied by a method $\backslash c_{om\vee\wedge}$ what different fiom the general
onc. The case of ( $n$ –l)-spreads was once treated by M. Hachtroudi [2],
but we shall retake this case and study it by a method shown in [5].

Suppose that there be given, in an N-dimensional space $X_{N}$ referred
to a coordinate system $(x^{i})$ , a system of hypersulfaces in such a way that
there exists one and only one hypeisurface passing $th\iota$ ou$ghN$ points given
in general position, and belonging to the system. Such a system of hy-
perstlfaces is given by a finite equation of the form

$f(x^{1},$ $x^{2}$ , ....... $x^{R};a^{1},$ $a^{2}$ , ..,..., $a^{N})=0$ , $(1 \cdot 2)$

* See the Bibliography at the end of the paper.


