Sur la Théorie du Corps de Classes

André Weil

I. Rappel de résultats connus.

Nous allons rappeler d'abord, en la mettant sous la forme qui nous parait la plus appropriée, l'interprétation donnée par Chevalley ([5a], [5b]), au moyen des idèles, des théorèmes fondamentaux de Takagi (complétés par Artin) sur la théorie des corps de classes. Soit k un corps de nombres algébriques, de degré fini sur le corps des rationnels, ou bien un corps de fonctions algébriques de dimension 1 sur un corps de constantes fini. Par une valuation v de k, on entend un homomorphisme du groupe multiplicatif k^* des éléments non nuls de k dans le groupe additif R des réels, tel que $v(k^*) \neq \{0\}$ et qu'en posant $f(x) = e^{-\lambda v(x)}$ pour $x \in k^*$ et f(0) = 0, la fonction f(x) satisfasse à $f(x+y) \le f(x) + f(y)$ pourvu que λ soit un nombre positif suffisamment petit; si alors on complète k par rapport à la "distance" f(x-y), on obtient un corps k_v localement compact; k_v ne change pas si on multiplie v par un facteur constant positif; on convient de ne pas distinguer deux valuations qui ne diffèrent que par un tel facteur. peut "normer" les valuations de k, c'est-à-dire multiplier chacune par un facteur convenable, de telle sorte que l'on ait $\sum v(x) = 0$ quel que soit $x \in k^*$, la somme étant étendue à toutes les valuations essentiellement distinctes de k; c'est la formule dite "du produit" ([2]), récrite en notation additive. On désignera encore par v la valuation v étendue par continuité à k_v . On dit, comme on sait, que v est archimédienne si k_v est isomorphe, soit au corps des réels, soit au corps des complexes; on dira dans le premier cas que v est réelle, dans le second que v est complexe. tout autre cas l'ensemble des valeurs de v, sur k ou sur k_v , est un sousgroupe discret de R, et on dit que v est discrète; k_v est alors isomorphe, soit à un corps p-adique, soit à un corps de séries formelles à une variable sur un corps de constantes fini, suivant que k est un corps de nombres ou de fonctions. On notera k_v^* le groupe multiplicatif des éléments non nuls de k_v ; et, si v est discrète, on désignera par U_v le groupe des unités de k_v , c'est-à-dire le sous-groupe de k_v * sur lequel v prend la valeur 0; U_v est alors un groupe compact, et k_v^*/U_v est isomorphe au groupe additif