Journal of the Mathematical Society of Japan

Vol. 2, Nos. 3-4, March, 1951.

A Generalization of Laguerre Geometry 1.

Yasuro Tomonaga.

(Received Feb. 10, 1948)

§ 1. Introduction. In this paper we shall try to generalize the classical Laguerre differential geometry¹⁾ in making use of the tensor calculus. Let V_n be an *n*-dimensional Riemannian space with the fundamental metric tensor $g_{ij}(x^k)^{2}$. In each tangent Euclidean space referred to a cartesian coordinate system (X^i) , a hypersphere is determined by the coordinates V^i of the center and its radius V^0 , and is represented by an equation of the form

(1.1)
$$g_{jk}(X^{j}-V^{j})(X^{k}-V^{k})=(V^{0})^{2}.$$

The V^i are components of a covariant vector and V^0 is that of a scalar of V_n . A hypersphere will be hereafter denoted by the symbol $V^{\lambda 3}$. Thus each tangent space of V_n contains ∞^{n+1} hyperspheres. When it is regarded as the space whose elements are hyperspheres, we shall call it the *tangent space of hyperspheres*. Now, the tangential distance D between two hyperspheres V^{λ} and W^{λ} is given by

(1.2)
$$D^{2} = g_{ik} (V^{j} - W^{j}) (V^{k} - W^{k}) - (V^{0} - W^{0})^{2}$$

or by

(1.3)
$$D^2 = g_{\mu\nu} (V^{\mu} - W^{\mu}) (V^{\nu} - W^{\nu}),$$

where we have put

$$g_{00} = -1, \quad g_{0k} = g_{k0} = 0.$$

Now, a hyperplane in tangent space is represented by an equation of the form

 $(1.4) t_i X^i = p.$

The necessary and sufficient condition that a hypersphere V^{λ} touches the hyperplane (1.4) is given by

¹⁾ T. Takasu. Differentialgeometrieen in den Kugelräumen, Bd. 2, Laguerresche Differentialkugelgeometrie.

²⁾ The indices i, j, k;.....take the values 1, 2,...., n.

³⁾ The indices λ , μ , ν ,...., take the values 0, 1,..., n.