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A Generalization of Laguerre Geometry 1.
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\S 1. Introduction. In this paper we shall try to generalize the classical
Laguerre differential geometry1) in making use of the tensor calculus. Let
$V_{n}$ be an n-dimensional Riemannian space with the fundamental metric
tensor $g_{ti}(x^{k})^{2)}$ . In each tangent Euclidean space referred to a cartesian
coordinate system $(X^{i})$ , a hypersphere is determined by the coordinates
$V^{\ell}$ of the center and its radius $V^{0}$ , and is represented by an equation of
the form

(1.1) $g_{jl;}(X^{j}-V^{j})(X^{\prime c}-V^{k})=(V^{0})^{2}$ .
The $V^{i}$ are components of a covariant vector and $V^{0}$ is that of a

scalar of $V_{n}$ . A hypersphere will be hereafter denoted by the symbol $V^{\lambda 3)}$

Thus each tangent space of $V_{n}$ contains $\infty^{n+1}$ hyperspheres. When it is
regarded as the space whose elements are hyperspheres, we shall call it
the tangent space of $hypersp\nearrow leres$ . Now, the tangential distance $D$ between
two hyperspheres $V^{\lambda}$ and $W^{\lambda}$ is given by

(1.2) $B^{o}=g_{jk}(V^{j}-W^{j})(V^{k}-W^{k})-(V^{0}-W)^{2}$

or by

(1.3) $D^{2}=g_{\mu\nu}(V^{\mu}-W^{\mu})(V^{\nu}-W^{\nu})$ ,

where we have put

$g_{00}=-1$ , $g_{0k}=g_{k0}=0$ .
Now, a hyperplane in tangent space is represented by an equation of

the form
(1.4) $tX^{i}=p$ .

The necessary and sufficient condition that a hypersphere $V^{\lambda}$ touches
the hyperplane (1.4) is given by

1) T. Takasu. Differentialgeometrieen in den Kugelraumen, Bd. 2, Laguerresche Differen-
tialkugelgeometrie.

2) The indices $i,$ $j,$ $k;\cdots\cdots take$ the values 1, 2, $\cdots\cdots$ , $n$ .
3) The indices $\lambda,$

$\mu,$ $\nu,\cdots\cdots$ , take the values $0,1,\cdots,$ $n$.


