Journal of the Mathematical Society of Japan Vol. 2, Nos. 3-4, March 1951.

Some Remarks on Relatively Free Homotopy.

Hiroshi Uehara.

(Received April 28, 1950)

Consider an arcwise connected topological space Z and select one of its points * as a base point. Suppose furthermore that there is given an arcwise connected subspace Y of Z containing the base point *. Given a point *' of Y, which may or may not be distinct from *, a path component of Y, i. e. a homotopy class of paths from * to *', induces an isomorphism between two *n*-th relative homotopy groups $\pi_n(Z, Y, *)$ and $\pi_n(Z, Y, *')$, attached to two points *, *' respectively. If in particular * = *', every element of the fundamental group $\pi_1(Y, *)$ induces an automorphism of the group $\pi_n(Z, Y, *)$, and therefore, algebraically speaking, the former may be regarded as a group of operators on the latter. Now I shall define a homotopy group $\sigma_n(Z, Y, *)$ for every integer $n \geq 3$, containing subgroups isomorphic to $\pi_n(Z, Y, *)$ and $\pi_1(Y, *)$, in which the operation of $\pi_1(Y, *)$ on $\pi_n(Z, Y, *)$ forms an inner automorphism. As is seen later, an element of the group o_n can be represented by a continuous mapping belonging to $Z^{\mathbb{Z}^n}$ which transforms $S^{n-1} = \dot{E}^n$ into Y and to different points on S^{n-1} into the base point *. (E^n means an *n*-dimensional cube, see foot note) The pair (Z, Y) is usually called "relatively *n*-simple," if $a^{\sharp} = a$ for any element $\boldsymbol{\xi}$ of $\pi_1(Y, *)$ and any $\boldsymbol{\alpha}$ belonging to $\pi_n(Z, Y, *)$, and it is well known that in such a pair of spaces a base point * can be arbitrarily selected in Y, in the sense that the isomorphism between two groups $\pi_n(Z, Y, *)$ and $\pi_n(Z, Y, *)$ Y, *') attached to an arbitrarily chosen point *' in Y is determined indepently of the path connecting * to *'. Therefore the simplicity of a pair of spaces may be considered as an intrinsic property of the pair. A pair (Z, Y) which is relatively *n*-simple is characterized by the purely algebraic relation in σ_n : $\sigma_n(Z, Y, *)$ is isomorphic to the direct product of two groups $\pi_n(Z, Y, *)$ and $\pi_1(Y, *)$. This paper will contain these and some other remarks obtained by applying M. Abe's arguments in (1) to the case of relative homotopy groups.

1. Definition of $\sigma_n(Z, Y, *)$ for $n \ge 3$. Let $e(x_0)$, $1 \ge x_0 \ge 0$, be a *-based loop in Y. Denote by σ_n the

1) $E^n = x^n (x_0, x_1, \dots, x_{n-1}); 1 \ge x_1 \ge 0, \quad n-1 \ge i \ge 0,$ $x^n = (x_i, x_{i+1}, \dots, x_{n-1})$