On Baire's Theorem concerning a Function f(x, y), which is Continuous with respect to Each Variable x and y.

Masatsugu Tsuji.

(Received Jun. 14, 1949)

The purpose of this paper is to give a simple proof of the following Baire's theorem¹⁾.

Theorem. Let f(x, y) be defined in a square $\Delta: 0 \le x \le 1$, $0 \le y \le 1$ and be continuous with respect to each variable x and y. Then there exists a set X on the x-axis, which is dense on [0,1], such that for any $x_0 \in X$, f(x, y), considered as a function of two varibles (x, y), is continuous at every point of the segment $x=x_0$, $0 \le y \le 1$. Similarly there exists a set Y on the y-axis, which is dense on [0, 1], such that for any $y_0 \in Y$, f(x, y) is continuous on the segment $y=y_0$, $0 \le x \le 1$

Proof. We will prove the existence of the set X, which satisfies the conditions of the theorem. The existence of the set Y can be proved similarly.

We define $f_n(x, y)$ $(n=1, 2\cdots)$ in Δ as follows:

$$f_{n}(x,y) = f(x,\frac{\nu}{2^{n}}) + \frac{f(x,\frac{\nu+1}{2^{n}}) - f(x,\frac{\nu}{2^{n}})}{\frac{1}{2^{n}}} \left(y - \frac{\nu}{2^{n}}\right)$$
(1)

for
$$0 \le x \le 1, \frac{\nu}{2^n} \le y \le \frac{\nu+1}{2^n}, \quad (\nu=0,1,2,\dots,2^n-1).$$

Then $f_n(x, y)$ is continuous in Δ and

$$f(x, y) = \lim_{n \to \infty} f_n(x, y), \tag{2}$$

$$\lim_{n \to \infty} \left[\underset{0 \le y \le 1}{\text{Max.}} \left| f(x, y) - f_n(x, y) \right| \right] = 0, \text{ for a fixed } x.$$
 (3)

From (2), it follows that f(x, y) is of the first class of Baire. For a fixed $\varepsilon > 0$, we define a set $E_n(\varepsilon)$ on the x-axis by

$$E_n(\varepsilon) = E\left[\max_{0 \le y \le 1} |f(x, y) - f_n(x, y)| \le \varepsilon \right], \tag{4}$$

¹⁾ R. Baire: Sur les fonctions de variables réelles. Annali di Matematica. (3) 3 (1899). K. Bögel: Über die Stetigkeit und die Schwankung von Funktionen zweier Veränderlichen. Math Ann. 81 (1920).