Journal of the Mathematical Society of Japan

Vol. 2,' Nos. 3-4, March, 1951.

On Conformal Representation of Multiply Connected Polygonal Domain.

Akira Mori.

(Received Oct. 1, 1949)

It is known, that a function w(z) is schlicht and star-shaped with respect to w(0) = 0 in |z| < 1, when, and only when, it can be expressed in the form

$$w(z) = \text{const.} \cdot z \cdot \exp \left(2 \int_{|\zeta|=1}^{\zeta} \log \frac{\zeta}{\zeta-z} d\mu(\zeta) \right),$$

where μ denotes a positive distribution of total mass 1 on the unit circle. This formula can also be written in the form

$$w(z) = \text{const. exp.} \int \log \frac{z}{\left(1 - \frac{z}{\zeta}\right)^2} d\mu(\zeta),$$

and here comes out *Koebe's extremal function*. The argument of this function is equal to a constant on |z|=1 except the point ζ , and jumps by $+2\pi$ when z passes ζ in positive direction on |z|=1. Then, the above formula shows: The star-shaped function w(z), whose argument is nondecreasing for z moving on |z|=1 in positive direction, can be constructed from such elements as a sort of geometrical mean.

We shall prove in this paper an analogue of this fact for n-ply connected domain, and, as an application thereof, treat the conformal representation of n-ply connected polygonal domain.

In order to simplify the wording, we call a half straight-line Arg \mathcal{Q} =const., $|\mathcal{Q}| \ge \text{const.} > 0$ an "*infinite radial slit*", and a segment Arg \mathcal{Q} =const., const. $\ge |\mathcal{Q}| \ge \text{const.} > 0$ a "*radial slit*", respectively.

§ 1.

Let D be a domain on z-plane bounded by n analytic closed curves $\Gamma_1, \dots, \Gamma_n$, whose sum we denote by Γ , and let z_0 be a fixed point in D.

For any point ζ on Γ , we denote by $\mathcal{Q}(z, \zeta)$ the function which satisfies the conditions $\mathcal{Q}(z_0, \zeta)=0$, $\mathcal{Q}'(z_0, \zeta)=1$ and maps D conformally on the whole \mathcal{Q} -plane cut along an infinite radial slit and (n-1) radial slits, so that the boundary-point ζ of D corresponds to the bodunary point