On a conformal mapping with certain boundary correspondences.

Akira Mori.

(Received, Oct. 1, 1949)

Given any set of points E on the unit circle C of z-plane, we shall treat in this paper the problem to map the interior of C conformally on a schlicht domain D so that the set E corresponds to a set of accessible boundary points of D all lying on one and the same point of the plane.

In order to simplify the wording, we call a half straight-line on w-plane: arg w=const., $\infty \ge |w| \ge \text{const.} > 0$, an infinite radial slit.

First, we consider the case where the set E is *finite*.

Theorem 1. Let $z_1,...,z_n$ be n points on C associated with n positive numbers $u_1,...,u_n$, whose sum is equal to 1. Then, there exists a function w=w(z), which maps the interior of C conformally on a domain D, so that: 1. D is the whole w-plane cut along n infinite radial slits, 2. z_k corresponds to the accessible boundary point of D lying on $w=\infty$, which is determined by an angular domain between two of these slits including an angle $2\pi u_k$ at $w=\infty$, and 3. w(0)=0, w'(0)=1. Under these conditions the mapping function is uniquely determined and is given by

(1)
$$zv = zv(z) = z \int_{k=1}^{n} (1 - \frac{z}{z_k})^{2a_k}.$$

Proof. We construct a potential function u(z) on z-plane, whose singularities are

$$\log |z|$$
 at $z=0$, $\log \frac{1}{|z|}$ at $z=\infty$,

and

$$2a_k \log \frac{1}{|z-z_k|}$$
 at $z=z_k$.

Denoting the conjugate potential of u(z) by v(z), we put

$$w(z) = \text{const. exp. } \{u(z) + iv(z)\}.$$