Riemann Spaces of Class Two and Their Algebraic Characterization.

Part II.

Makoto Matsumoto.

(Received June 15, 1949)

In this paper we give a necessary and sufficient condition that a Riemann space $R_n(n \ge 8)$ be of class two, making use of the type number discussed in a preceding paper⁽¹⁾.

§ 1. A reality condition

Suppose that a Riemann space $R_n(n \ge 6)$ of class two is of type ≥ 3 , and put

$$K_{ij} = p_{ij} + eq_{ij} \quad (e^2 = -1);$$
 (1.1)

where the tensor K_{ij} is the solution of (1.9) of the part I, i. e.

$$M_{ijkl} = K_{i(j)} K_{kl)}, \tag{1.2}$$

and p's and q's are all real. The tensor M_{ijkl} in $(1\cdot 2)$ is defined by $(1\cdot 10)$ of the part I, i. e.

$$M_{ijkl} = \frac{1}{2} \left(R_{c \cdot i(j} R_{|\alpha| \cdot kl)}^{c} \right). \tag{1.3}$$

Substituting $(1 \cdot 1)$ in $(1 \cdot 2)$ and equating to zero the imaginary parts we have

$$p_{i(j}q_{kl)} + q_{i(j}p_{kl)} = 0. (1.4)$$

(A) Suppose that det. |q| = 0. Contracting (1.4) by q^{kl} we have

$$(n-4) p_{ij} + q^{ab} p_{ab} q_{ij} = 0,$$

and contracting it by q^{ij} we have $q^{ab}p_{ab}=0$ for n>2. Therefore all of p_{ij} are zero for $n \ge 6$. Hence the K's are pure imaginary except zero.

(B) Suppose that det. |q|=0. If the rank of ||q|| is $2\sigma(n>2\sigma \ge 6)$, we have similarly $p_{ij}=0$ for $i, j=1,\ldots, 2\sigma$.

Next putting k, $l=1,\ldots, 2\sigma$ and i, $j>2\sigma$ in $(1\cdot 4)$ we have $q_{kl}p_{ij}=0$,