Change of variables in the multiple Lebesgue integrals.

Masatsugu Tsuji.

(Received April 4, 1948)

Rademacher's theorem¹⁾ on the change of variables in the multiple Lebesgue integrals, though very important, is not found in any book on the theory of functions of real variables, so that I will give a simple proof of it in the following lines.

Let D be a domain in the (x_1, \ldots, x_n) -space and Δ be one in the (u_1, \ldots, u_n) -space and D be mapped on Δ topologically by

$$T: u_{i} = f_{i}(x_{1}, \dots, x_{n}),$$

$$T^{-1}: x_{i} = \varphi_{i}(u_{1}, \dots, u_{n}), (i = 1, 2, \dots, n),$$
(1)

where f_i and φ_i are continuous in D and Δ respectively.

If any measurable set in D is mapped on a measurable set in Δ , then T is called a measurable mapping. It is well known? that the necessary and sufficient condition that T is a measurable mapping is that any null set in D is mapped on a null set in Δ .

Theorem 1.4) If at every point $(x_1, \ldots, x_n) \in D$,

$$\frac{\lim_{h_1^2 + \dots + h_n^2 \to 0} \frac{|f_i(x_1 + h_1, \dots, x_n + h_n) - f_i(x_1, \dots, x_n)|}{\sqrt{h_1^2 + \dots + h_n^2}}$$

$$= L_i(x_1, \dots, x_n) < \infty \qquad (i = 1, 2, \dots, n), \tag{2}$$

then T is a measurable mapping.

Proof. We define a set A_k (k=1,2,...) of points $(x_1,...,x_n)$ by the condition

⁽¹⁾ Rademacher: Über die partielle und totale Differentierbarkeit von Funktionen mehererer Veränderlichen und über die Transformation der Doppelintegrale. Math. Ann. 79.

⁽²⁾ Rademacher: Eineindeutige Abbildung und Messbarkeit. Monathefte f. Math. u. Phys. 27 (1916). Carathéodory: Vorlesungen über reelle Funktionen. p. 354.

⁽³⁾ A set is called a null set, if its Lebesgue measure is zero.

⁽⁴⁾ Rademacher. 1. c. (1), (2).