Journal of the Mathematical Society of Japan

On the dimension of normal spaces. II.

Kiiti Morita

(Received Sep. 1, 1949)

In the present paper we shall generalize some of the results obtained in a previous paper $[5]^{,1}$

As is well known, a normal space R is called to be of dimension not greater than n, dim $R \leq n$, in case for any finite open covering of R there exists an open refinement of order not greater than n+1. Our main theorem reads as follows: Let $\{G_{\alpha}; \ u \in Q\}$ be a locally finite system of open sets in a normal space R and $\{F_{\alpha}; \ u \in Q\}$ a system of closed sets such that $F_{\alpha} \subset G_{\alpha}, \ u \in Q$. If the dimension of a closed set A of R is not greater than n, then there exists a system $\{U_{\alpha}; \ a \in Q\}$ of open sets in R such that (1) $F_{\alpha} \subset U_{\alpha} \subset G_{\alpha} \ u \in Q$ and (2) the order of the system $\{A \cdot (\overline{U}_{\alpha} - U_{\alpha}); \ u \in Q\}$ is not greater than n.

As an application of this theorem, we can prove a theorem that for a metrizable space R the relation dim $R \leq n$ implies the relation dim $R \leq n$, where we mean by dim R the dimension of R in the sense of Menger-Urysohn. In particular, for the case that R is a metric space with the star-finite property, the relation dim $R \leq n$ is shown to be equivalent to dim $R \leq n$. This theorem may be considered as a generalization of a well-known theorem for separable metric spaces, since such spaces have necessarily the star-finite property (Cf. [6]).

Besides the results mentioned above some other theorems will also be obtained.

§ 1. Locally finite systems.²⁾

A system \mathfrak{W} of subsets in a topological space R is called to be locally finite, if for each point p of R there exists a neighbourhood U(p) such that U(p) intersects a finite number of sets of \mathfrak{M} .

Theorem 1.1. Let $\{G_{\alpha}; u \in \Omega\}$ be a locally finite open covering of a

¹⁾ Numbers in brackets refer to the Bibliography at the end of the paper.

²⁾ The results of §§ 1,2 and 3 were published in [7] except Theorems 2.4 and 3.2.