Journal of the Mathematical Society of Japan Vol 1, No. 4, April, 1950.

On removable singularities of an analytic function of several complex variables.

MASATSUGU TSUJI.

(Received June. 18, 1947)

1. Let $u(P) = u(x_1, \ldots, x_n)$ be defined in a domain D in an *n*-dimensional space and all its partial dervatives of the second order be continuous and satisfy the equation:

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2} = 0, \qquad (1)$$

then u(P) is called a harmonic function in *D*. It is easily seen that $u(P) = \overline{OP}^{n-2}$ $(n \ge 3)$ is a harmonic function, where *P* is a variable point and *O* is a fixed point.

Let Σ be a sphere in an *n*-dimensional space with O as its center and R be its radius and S be its boundary. Let Q be a point of S and $\varphi(Q)$ be an integrable function on S. We define a Poisson integral with $\varphi(Q)$ as its boundary value:¹⁾

$$u(P) = \frac{1}{RS_n} \int_{S} \varphi(Q) \frac{R^2 - \overline{OP^2}}{\overline{PO^n}} \, d\sigma_{\zeta}, \qquad (2)$$

where S_n is the surface area of a unit sphere and $d\sigma_Q$ is the surface element of S at Q. Then u(P) is harmonic in Σ .

We can prove that u(P) tends to $\varphi(Q)$ almost everywhere on S, when P tends to Q non-tangentially to S. If $\varphi(Q)$ is continuous at Q_0 , then u(P) tends to $\varphi(Q_0)$, when P tends to Q_0 from the inside of Σ . Let u(P) be a bounded harmonic function in Σ , then $\lim u(P) = \varphi(Q)$ exists almost everywhere on S, when P tends to Q non-tangentially to S and u(P) can be expressed by $(2)^{2^2}$.

¹⁾ For an n-dimensional Poisson integral, c. f. C. Carathéodory: On Dirichlet problem. Amer. Jour. Math. 59(1937).

²⁾ The case n=2 is the well known theorems of Fatou and Schwarz. For the case n=3I have proved analogous theorems in a paper: On Fatou's theorem on Poisson integrals. Jap. Jour-Math. 15(1938). The method can be applied for the general case.