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1. Let #(P)=ul(x,......... , %,) be defined in a domain D in an

n-dimensional space and all its partial dervatives of the second order be
continuous and satisfy the equation :

du=0% 4 .4 0% (1)
ox; 0%, ’
then #(P) is called a harmonic function in D. It is easily seen that

#(P)=0P"* (12>3) is a harmonic function, where /7 is a variable point
and O is a fixed point.

Let >} be a splhere in an n-dimensional space with O as its center
and R be its radius and S be its boandary. l.et Q be a point of S and
¢(Q) be an integrable function on S. We define a Poisson integral with
¢(Q) as its boundary value:V

A= | 0@ B0, @

where S, is the surface area of a unit spheie and do, is the surface
element of S at Q. Then #(#) is harmonic in 3. .

We can prove that # () tends to ¢(Q) almost everywhere on S, when
P tends to Q non-tangentially to S. If ¢(Q) is continuous at @, then
#(F) tends to ¢(Q,), when P tends to @, from the inside of 3. Let 2(/)
be a bounded harmonic function in 37, then lim z(P)=¢(Q) exists almost

everywhere oa S, when 7 tends to Q non-tangentially to S and #(#”) can be
expressed by (2)%.

1) Yor an n-dimensional Poisson integral, c.f. C. Carathéodory: On Dirichlet problem.
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