Journal of the Mathematical Society of Japan Vol. 1, No. 4 April 1950.

On the decomposition of an (L)-group

Yozô Matsushima

(Received Feb. 15, 1949)

The purpose of the present note is to give a decomposition theorem of an (L)-group¹ which is a generalization of the well known theorem of Levi² in the theory of Lie groups.

The writer expresses his hearty thanks to Mr. M. Gotô for his kind advices.

§1. A locally compact group G is called an (L)-group, if G contains a system of closed normal subgroups $\{N_{\alpha}\}$ such that

- 1) G/N_{α} are all Lie groups and
- $2) \quad \cap N_{\mathfrak{a}} = e,$

where e denotes the unit element of G. If an (L)-group G is connected, G contains a system of compact normal subgroups $\{K_{\alpha}\}$ such that G/K_{α} are all Lie groups and $\bigcap K_{\alpha} = e$. Moreover we may assume that all K_{α} are contained in a compact normal subgroup and that the intersection of any finite number of K_{α} is contained in the system $\{K_{\alpha}\}^{3}$. Such a system $\{K_{\alpha}\}$ is denoted in the following as a *canonical system* of G.

A subgroup L of an (L)-group G is called a Lie subgroup, if it is generated by a local Lie group L_i which is contained in a neighbourhood of the unit element of G. If we take as the neighbourhoods of the unit element in the group L those of the local group L_i we may introduce a new topology in L, which we shall call the inner topology of L.

Now let G be an arbitrary topological group and let H_1 and H_2 be the subgroups of G. We denote by $[H_1, H_2]$ the subgroup of G generated by the elements of the form $[h_1, h_2] = h_1 h_2 h_1^{-1} h_2^{-1}$. The closure of $[H_1, H_2]$ will be denoted by $C(H_1, H_2)$ and is called the topological commutator group of H_1 and H_2 . In particular C(G, G) is called the topological commutator group of G and is denoted by D(G). We define inductively the groups $D_n(G)$ by the relations $D_0(G) = G$, $D_n(G) = D(D_{n-1}(G))$. Analogously the subgroups $N_n(G)$ are defined by $N_0(G) = G$. $N_n(G) =$ $C(G, N_{n-1}(G))$. A connected locally compact group G is solvable (nilpotent), if $D_n(G) = e(N_n(G) = e)$ for some integer n. In the case of the Lie groups these definitions of the solvability and the nilpotency coincide with the usual ones.