Journal of the Mathematical Society of Japan Vol. 1, No. 4 April 1950

On Projectively Connected Spaces whose Groups of Holonomy Fix a Hyperquadric

Tominosuke Otsuki

(Received Feb. 12, 1949)

Introduction. This paper deals with n-dimensional projectively connected spaces P_n whose groups of holonomy fix a hyperquadric. For the spaces with normal connexion, similar results as ours have been obtained independently by S. Sasaki and K. Yano.¹⁾

In § 1, 2, we shall arrive at the fundamental equations (22) and (24) in the case of the spaces with no torsion, following the general method of E. Cartan in his famous paper.²⁾ In § 3, we shall consider the Riemannian space R_{n+1}^* which is associated with the space P_n and obtain a relation between these two spaces which shows that the condition in order that the connexion of P_n be normal is equivalent to that of R_{n+1}^* being an Einstein space. In § 4, we shall investigate the relations between the space P_n and the Riemannian space R_n^* which is a hypersurface in R_{n+1}^* . Then, in § 5, we shall show that there exist a Riemannian space R_n which is projective to P_n and that, if the connexion of P_n is normal, R_n is an Einstein space. Lastly, in § 6, we shall show that R_n is the space treated by E. Cartan.³⁾

§ 1. According to E. Cartan, let $R: (A, A_i)$ (i=1,2,...,n) be a frame of an *n*-dimensional space P_n with projective connexion. Then the connexion is given by a system of Pfaffians $\omega_{\mu}^{\lambda}(\lambda, \mu=0,1,2,...,n)$ such that

(1) $dA = \omega_0^0 A + \omega^i A_i$, $dA_i = \omega_i^0 A + \omega_i^j A_j$ where $\omega^i = \omega_0^i$. The equations of structure of P_n are

(2) $(\omega_{\lambda}^{\mu})' = [\omega_{\lambda}^{\rho} \ \omega_{\rho}^{\mu}] - \mathcal{Q}_{\lambda}^{\mu},$

$$\mathcal{Q}^{\mu}_{\lambda} - \delta^{\mu}_{\lambda} \mathcal{Q}^{0}_{0} = \frac{1}{2} \mathcal{A}_{\lambda}{}^{\mu}{}_{ij} \quad \left[\omega^{i} \omega^{j} \right]$$

where $A_{\lambda}^{\mu}{}_{ij}^{\mu}$ are the components of the tensor of curvature and torsion of the space. In a coordinate neighborhood (γ^{i}) , we can use natural frames such that the following relations hold:

(3)
$$\omega^i = dy^i, \qquad \omega^i_i - n\omega^0_0 = 0.$$

Let us now represent a non degenerate hyperquadric Q_{n-1} , which the