An operator-theoretical treatment of temporally homogeneous Markoff process

Kôsaku Yosida

(Received April 1, 1948)

1. Introduction. Let $\{U_t\}$, $0 \le t < \infty$, be a one-parameter semi-group of linear (=everywhere defined additive, continuous) operators from a complex Banach space E to E:

- $U_{t} U_{s} = U_{t+s}$. $U_{0} = I$ (=the identity operator). sup $||U_{t}|| \leq 1$, (1.1)
- (1.2)
- $\lim_{t \to \infty} U_t x = U_t x, 0 \le t_0 < \infty \text{ (lim=strong limit)}.$ (1.3)

In a preceding note¹⁾, the author obtained the following results. D is the totality of x for which

weak limit $h^{-1} (U_h - I)x = Ax$

exists, then D coincides with the totality of x for which

$$\lim_{h \to 0} h^{-1}(U_h - I) x = Ax$$

exists and D is dense in E. The differential quotient operator (d.q.o.) A is a closed additive operator from D to E with the properties:

$$(1.5) U_{\mathfrak{s}}x - x = \int_{0}^{\mathfrak{s}} U_{\mathfrak{s}} Ax \ ds \quad \text{for } x \in D,$$

for any positive integer n, $I_n = (I - n^{-1} A)^{-1}$ exists and $||I_n|| \le 1$, $AI_n = n(I_n - I)$, $\lim_{n \to \infty} AI_n x = Ax$ for $x \in D$,

(1.7)
$$I_n x = \int_0^\infty n \exp(-nt) U_t x \ dt \text{ and } \lim_{n \to \infty} I_n x = x \text{ for } x \in E.$$

- $U_t x = \lim_{n \to \infty} \exp(tAI_n) x$, $x \in E$, uniformly in t for any finite interval of t.²⁾
- Let conversely A be an additive operator from a dense linear subset D of E such that (1.6) is satisfied for any positive integer n, then there

¹⁾ On the differentiability and the representation of the one-parameter semi-group of linear operators, the Journal of the Math. Soc. of Japan, 1 (1948).

²⁾ We may obtain, similarly as (1.8), another representation of U_i : $U_t x = \lim_{n \to \infty} (I - n^{-1}t A)^{-n} x.$