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Chapter $m$.
Formation of invariant differentials and the Schubert varieties.

I.

1. We have already seen that the manifold $S(n)$ can be considered
as the set of all null-systems $x\rightarrow y=Sx$ such that the skew matrix $S$ is at
the same time orthogonal. Let us show that this manifold can also be
considered as the set of all isotropic m-planes in $P_{n}$ .

In order that a subspace $\mathfrak{M}\epsilon P$ be isotropic, it is neccesary and sufficie-
nt that $(x, y)=0$ for all $x,$ $y\epsilon \mathfrak{M}$ . For any $\mathfrak{M}$ there exists the conjugate
EM of $\mathfrak{M}$

$\overline{\mathfrak{M}}$ is namely the set of vectors $\overline{x}$, where $x\in \mathfrak{R}l$. The corres;.
pondence $\mathfrak{M}\rightarrow\overline{\mathfrak{M}}$ is invariant under the group $O(n)$ . In $\mathfrak{M}$ we take $m$

vectors $x_{1},\ldots\ldots,x_{m}$ such that $(x_{i}\overline{x}_{j})=\delta_{jj}$ . The vectors $e_{1},\ldots\ldots,$ $e_{n}$ with

(1) $e_{i}=(x_{i}+\overline{x}_{i})/\sqrt{}\overline{2}$ , $e_{m+i}=(x_{i}-\overline{x}_{t})/\sqrt{}\overline{-2}$

constitute a real coordinate system such that $(e_{i}e_{j})=\delta$ (ij). This shows
at once that the manifold $\tilde{\Sigma}^{\rceil}(n)$ is tronsformed transitively by the group
$OL(n.)$ Now the manifold $\sum^{\sim}(n)$ consists of two different continuous families,

each being transformed transitively by the group $O(n)$ . We denote one
of them by $\sum(n)$ . Then there exists a one to one correspondence between
the elements of the manifolds $S(n)$ and $\sum(n)$ invariant with respect to
the group $O(n)$ . In fact, let $S$ be an element of $S(n)$ . We consider a
set $\mathfrak{M}$ of all complex vectors of the form

$\mathfrak{x}=x+\sqrt{}\overline{-1}Sx$ $x\epsilon R_{n}$

The vector $x$ is isotropic. To show that $\mathfrak{M}$ is isotropic m-dimensional we
take a special coordinate system such that $S=1$. $\mathfrak{M}$ is then the set of
all vectors of the form $(\approx 1’\cdots\cdots,z_{m}, \sqrt{-1}z_{1}, \ldots\ldots,\sqrt{-}I z_{m}),$ $where\approx_{i}\in K$.

The group of desplacements of $S(n)$ is $S\rightarrow TS^{\prime}T,$ $T\in O(n)$ . We denote by $\Sigma(n)$ the set
of all isotropic $m$-planeS of $P_{n}$ , where $n=2m$.


