A Theorem on Riemann Sum. Notes on Fourier Analysis (XIII)

TAMOTU TSUCHIKARA.

Let us consider the series

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^{\alpha}} \quad \left(0 < \alpha < \frac{1}{2}\right) ,$$

and let $f_n(x)$ be its *n*-th Riemann sum, i.e.

$$f_n(x) = \frac{1}{n} \sum_{k=1}^n f\left(x + 2\pi \frac{k}{n}\right).$$

Since f(x) is of order $1/x^{1-\alpha}$ in the neighbourhood of the origin, we have $\lim_{n\to\infty}\sup f_n(x)=\infty$

for almost all x, by the theorem due to J. Marcinkiewicz, A. Zygmund¹⁾ and H. Ursell²⁾

Connected with this fact it may be of some interest to prove the following

Theorem. Let f(x) be a function integrable in $(0,2\pi)$ and of period 2π . Let $f_n(x)$ be its Riemann sum and its Fourier series be

(1)
$$f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) .$$

If the Fourier coefficients satisfy the condition

(2)
$$\lim_{n\to\infty} \sum_{\nu=1}^{\infty} (|a_{n\nu} - a_{n(\nu+1)}| + |b_{n\nu} - b_{n(\nu+1)}|) = 0,$$

in particular if

$$\sum_{n=1}^{\infty} (|a_n - a_{n+1}| + |b_n - b_{n+1}|) < \infty,$$

or if $\{a_n\}$, $\{b_n\}$ are non-increasing sequences, then for almost all x there exists a sequence of integers $\{m_k\}$ (depending on x) such that

$$\lim_{k \to \infty} f_{m_k}(x) = \int_0^{2\pi} f(x) dx$$

¹⁾ Mean values of trigonometrical polynomials, Fund. Math., 28 (1937), p. 131-166, spec., p. 157.

²⁾ On the behaviour of a certain sequence of functions derived from a given one, Jour. London Math. Soc., 12 (1937).