Journal of the Mathematical Society of Japan Vol. 1, No. 3, Dec. 1949.

Galois theory for general rings with minimum condition.

TADASI NAKAYAMA

(Received Feb. 11, 1948)

In a very suggestive paper N. Jacobson founded a Galois theory for division rings.¹⁾ The theory was then skilfully extended by G. Azumaya to simple, and to uni-serial rings.²⁾ The present work is to establish it for general rings with minimum condition.³⁾ Most of our arguments are modifications or generalizations of theirs, while the others are those which have been employed in a previous note on semilinear repesentations and normal bases in noncommutative domains,⁴⁾ and we shall also resume the theorem of semilinear normal basis in a generalized and improved form.

The writer is grateful to Mr. G. Azumrya for his friendly cooperation during the preparation of the present paper.

§ 1. Crossed product.

Let R be a ring with unit element 1 and satisfying the minimum condition (whence the maximum condition) for ideals. Let σ be an automorphism of R. For a two-sided module \mathfrak{m} of R we can introduce a new two-sided module (\mathfrak{m}, σ) of R which coincides with \mathfrak{m} as right-module and for which left operation by R is defined: $a * u = a^{\sigma} u$ ($a \in R, u \in \mathfrak{m}$).

We call a finite group of automorphisms $\mathfrak{G} = \{1, \sigma, \dots, \tau\}$ a Galois group of R when the following condition is satisfied:

(*) (R, σ) , (R, τ) with distinct σ , τ in \mathfrak{G} have no isomorphic nonvanishing sub-residue-moduli.

If b is a \mathfrak{G} -invariant ideal in R, our Galois group \mathfrak{G} of R can be, in natural manner, looked upon as that of the residue-ring R/\mathfrak{b} .

A crossed product (=semilinear group ring with factor set) of R with

¹⁾ N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann. Math. 41 (1940).

²⁾ G. Azumaya, New foundation for the theory of simple rings, forthcoming in Proc. Imp. Acad. Japan: G. Azumaya, Galois theory for uni-serial rings, Journ. Math. Soc. Japan 1 (1949).

³⁾ Another extreme case is that of (closed) irreducible rings. See T. Nakayama, Note on irreducible rings, forthcoming in Proc. Imp. Acad. Japan; T. Nakayama-G. Azumaya, On irreducible rings, Ann. Math. 48 (1947).

⁴⁾ T. Nakayama, Semilinear normal basis for quasifields, Amer. Journ. Math. 71 (1949).