ON COMPACT MINIMAL SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE IN A SPACE OF CONSTANT CURVATURE: II

Katsuei Kenmotsu

(Received June 30, 1973)

(Part 1 appeared in the preceding issue of this Journal, Vol. 25)

5. $N_{(b)}$ and $\Omega_{(b)}$ of compact flat surface. As an application of the formulae obtained in the $\S 4$, we shall study $N_{(b)}$ and $\Omega_{(b)}$ of a compact flat surface. Let \bar{M} be a space of constant curvature, $c \neq 0$. By the Gauss equation, we have $K_{(2)}=c$ and so $K_{(2)}$ is a positive constant and $c>0$. Since $f_{(2)}$ is a globally defined non-negative smooth function on M, by (4.26) , we have $f_{(2)}=$ constant and $A_{(2)}=0$ on M. By $4 N_{(2)}=$ $K_{(2)}^{2}-f_{(2)}, N_{(2)}$ is also constant on M. By $K_{(2)}>0$ on M and (3.11), we have $1 \leqq p_{1}(x) \leqq 2$ at any point of M. Since $N_{(2)}$ is constant, $p_{1}(x)$ is constant on M. Then the third fundamental forms are defined on a neighborhood of any point of M, i.e., we have $M=\Omega_{(2)}$. If $N_{(2)}=0$, equivalently, $p_{1}(x)=1$ on M, by Lemma 2, there is a 3 -dimensional totally geodesic submanifold of \bar{M} such that M is contained in the submanifold as a minimal surface. If $N_{(2)} \neq 0$, then $N_{(2)}$ is a positive constant on M and $p_{1}(x)=2$ on M. As $f_{(3)}$ is globally defined on M, by (4.26) , we have $f_{(3)}=$ constant and $A_{(3)}=0$. Then we can prove $K_{(3)}=$ constant by virtue of the following Lemma 4 and (4.27).

Lemma 4. Let M be a minimal surface in \bar{M}. Suppose that

$$
\begin{gather*}
p_{a}(x)=2,0 \leqq a \leqq b-2 \text { and } p_{b-1}(x)=\text { constant on } \Omega_{(b)} ; \tag{5.1}\\
\bar{A}_{(b)}=0 \text { on } \Omega_{(b-1)} ; \tag{5.2}\\
K_{(b)}=\text { constant on } \Omega_{(b-1)} . \tag{5.3}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
N_{(b)} H_{\lambda_{b-1}, 1}^{(b)}=0 \text { on } \Omega_{(b)} . \tag{5.4}
\end{equation*}
$$

Proof. By (5.1), we have $H_{\alpha}^{(b)}=0$ for $\alpha \geqq 2 b+1$. Then from (4.18) and (5.2), we obtain

$$
\begin{equation*}
H_{(2 b-1)}^{(b)} H_{(2 b-1), 1}^{(b)}+H_{(2 b)}^{(b)} H_{(2 b), 1}^{(b)}=0 . \tag{5.5}
\end{equation*}
$$

Since $K_{(b)}=$ constant and (4.24), we get

