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5. N, and 2, of compact flat surface. As an application of the
formulae obtained in the §4, we shall study N, and 2, of a compact
flat surface. Let M be a space of constant curvature, ¢ # 0. By the
Gauss equation, we have K, = ¢ and so K, is a positive constant and
¢ > 0. Since f, is a globally defined non-negative smooth function on
M, by (4.26),, we have f, = constant and A, =0 on M. By 4N, =
K% — fu, N is also constant on M. By K,; >0 on M and (3.11), we
have 1 < p,(x) <2 at any point of M. Since N, is constant, p,(x) is
constant on M. Then the third fundamental forms are defined on a
neighborhood of any point of M, i.e., we have M = Q,. If N, =0,
equivalently, p, () =1 on M, by Lemma 2, there is a 3-dimensional
totally geodesic submanifold of M such that M is contained in the sub-
manifold as a minimal surface. If N, ## 0, then N, is a positive constant
on M and p(x) =2 on M. As f is globally defined on M, by (4.26),,
we have f; = constant and A ; = 0. Then we can prove K; = constant
by virtue of the following Lemma 4 and (4.27).

LEMMA 4. Let M be a minimal surface in M. Suppose that
(5.1) 2.8) =2 0=Za=<b— 2 and p,_(x) = constant on 2, ;

(5.2) Ap=0o0n 24y ;
(5.3) K, = constant on 24—, .
Then we have

(5.4) NpH) =0 on 24 .

Proor. By (5.1), we have H{" = 0 for « = 2b + 1. Then from (4.18)
and (5.2), we obtain

(5.5) H HE .+ HOHS,,=0.
Since K;, = constant and (4.24), we get



