ON COMPACT MINIMAL SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE IN A SPACE OF CONSTANT CURVATURE: II

KATSUEI KENMOTSU

(Received June 30, 1973)

(Part 1 appeared in the preceding issue of this Journal, Vol. 25)

5. $N_{(b)}$ and $\Omega_{(b)}$ of compact flat surface. As an application of the formulae obtained in the §4, we shall study $N_{(b)}$ and $\Omega_{(b)}$ of a compact flat surface. Let M be a space of constant curvature, $c \neq 0$. By the Gauss equation, we have $K_{(2)}=c$ and so $K_{(2)}$ is a positive constant and c>0. Since $f_{\scriptscriptstyle{(2)}}$ is a globally defined non-negative smooth function on M, by $(4.26)_2$, we have $f_{(2)} = \text{constant}$ and $A_{(2)} = 0$ on M. By $4N_{(2)} =$ $K_{(2)}^2 - f_{(2)}$, $N_{(2)}$ is also constant on M. By $K_{(2)} > 0$ on M and (3.11), we have $1 \le p_1(x) \le 2$ at any point of M. Since $N_{(2)}$ is constant, $p_1(x)$ is constant on M. Then the third fundamental forms are defined on a neighborhood of any point of M, i.e., we have $M = \Omega_{(2)}$. If $N_{(2)} = 0$, equivalently, $p_1(x) = 1$ on M, by Lemma 2, there is a 3-dimensional totally geodesic submanifold of \overline{M} such that M is contained in the submanifold as a minimal surface. If $N_{(2)} \neq 0$, then $N_{(2)}$ is a positive constant on M and $p_1(x) = 2$ on M. As $f_{(3)}$ is globally defined on M, by $(4.26)_3$, we have $f_{(3)} = \text{constant}$ and $A_{(3)} = 0$. Then we can prove $K_{(3)} = \text{constant}$ by virtue of the following Lemma 4 and (4.27).

Lemma 4. Let M be a minimal surface in \overline{M} . Suppose that

(5.1)
$$p_a(x) = 2, 0 \le a \le b - 2 \text{ and } p_{b-1}(x) = constant \text{ on } \Omega_{(b)};$$

(5.2)
$$\bar{A}_{(b)} = 0 \text{ on } \Omega_{(b-1)};$$

(5.3)
$$K_{(b)} = constant \ on \ \Omega_{(b-1)}.$$

Then we have

(5.4)
$$N_{(b)}H_{\lambda_{b-1},1}^{(b)}=0 \ on \ \Omega_{(b)}.$$

PROOF. By (5.1), we have $H_{\alpha}^{(b)}=0$ for $\alpha \geq 2b+1$. Then from (4.18) and (5.2), we obtain

$$(5.5) H_{(2b-1)}^{(b)}H_{(2b-1),1}^{(b)} + H_{(2b)}^{(b)}H_{(2b),1}^{(b)} = 0.$$

Since $K_{(b)} = \text{constant}$ and (4.24), we get