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Linear topological spaces were studied by A. Kolmogoroff,? J. v. Neu-
mann,® H. Hyers® and rhany other authers. Concerning relations among
these investigations, J. V. Wehausen® proved the equivalency of linear
topological spaces of Neumann and Kolmogonoff, and Hyers gave a new
defintion of linear topological spaces equivalent to them. After him to any
linear topological space we can associate a cernain directed system. When
we examine this directed system, we see that the directed system can be
replaced by a semi-join-lattice, and the linear topological space is characte-
rized by the family of new topologies which form a semi-join-lattice (§ 2).
In § 3 we show that this semi-lattice can be replaced by the semi-meet-
attice. The norm of the convex linear topological space satisfies the
triangular inequality. But the ‘“Norm” of § 3 does not necessarily satisfy
it. In § 4 we consider that the “Norm” satisfying the triangular inequality
actually characterizes the convex linear topological space.

1. Definitions. Kolmogoroff’s Definition (Definition K). Let L be a
linear Hausdorff space. If the vector operations x+y.and te x are continuous
with respect to this topology, then L is said to be a linear topological
space.

Nenmann’s Definition (Definition N).Let Lbe a linear space. If L has
family A of subsets U in L satisfying the following conditions, it is said to
be a linear topological space, and is denoted by L(A). A and U are said to
be the neighbourhood system and neighbourhood, respectively.
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