NOTES ON FOURIER ANALYSIS (XXXIX): THEOREMS CONCERNING CESARO SUMMABILITY*)

By
Shin-ichi Izùmi and Gen-ichirô Sunouchi

In this paper it is proved that, if

$$
\begin{equation*}
\int_{0}^{t} \varphi_{x}(u) d u=o\left(t / \log \frac{1}{t}\right), \quad \text { as } \quad t \rightarrow 0 \tag{1}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable $(C, 1)$ at $t=x$, and if $0<\alpha<1$ and

$$
\begin{equation*}
\int_{0}^{t} \varphi_{x}(u) d u=o\left(t^{1 / \alpha}\right), \quad \text { as } \quad t \rightarrow 0 \tag{2}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable (C, α) at $t=x$. These theorems are known (Wang [7], [8]), but we give two kinds of proof. Each method is generalized to prove more general theorem. We prove that o in (1) and (2) cannot be replacd by O in these theorems.
§ 1. Theorem 1. If

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=o\left(t / \log \frac{1}{t}\right), \quad \text { as } \quad t \rightarrow 0 \tag{1}
\end{equation*}
$$

where

$$
\varphi(u)=\varphi_{x}(u)=\{f(x+u)+f(x-u)-2 f(x)\} / 2
$$

then the Fourier series of $f(t)$ is summable $(C, 1)$ at. $t=x$.
We prove this theorem in two ways, one using Young's function and the other using the Fejér kernel, respectively.

The first Proof of Theorem 1. For $\alpha>0$, Young's function is defined by (Hobson [2] and Bosanquet [1])

$$
\gamma_{1+\infty}(u)=\int_{0}^{1}(1-t)^{\alpha} \cos t u d t
$$

Then, as is well known, $\gamma_{1+\alpha}(u)$ and its derivative $\gamma_{1+\alpha}^{\prime}(u)$ are bounded for $n \geqq 0$ and
(3) $\gamma_{1+\alpha}(u) \sim \frac{\Gamma(1+\alpha)}{u^{1+\alpha}} \cos \left(u-\frac{\alpha+1}{2} \pi\right)+O\left(\frac{1}{u^{\alpha+2}}\right)+O\left(\frac{1}{u^{2}}\right)(u \rightarrow \infty)$ and $\gamma_{1+\alpha}^{\prime}(u)$ has the behaviour of the derivative of the right hand side of (3) as $u \rightarrow \infty$. Especially, for $0<\alpha \leqq 1$,

$$
\begin{equation*}
\gamma_{1+\alpha}(u)=O\left(1 / u^{1+\alpha}\right) \quad(u \rightarrow \infty) . \tag{4}
\end{equation*}
$$

The necessary and sufficient condition that the Fourier series of $f(t)$ is summable $(C, 1)$ at $t=x$, is that

[^0]
[^0]: *) Received Apr. 3rd., 1950.

