COMPACT SET IN UNIFORM SPACE AND FUNCTIONS SPACES*)

Β**Y**

HISAHARU UMEGAKI

The purpose of this paper is to discuss some compactness problems in uniform space and in a space of continuous functions whose domain and range are both uniform spaces. It is known that a uniform structure in uniform space may be represented by a family of pseudo-metrics. Using this we shall prove a convex linear topological space can be imbedded into a direct product of normed spaces (§ 1). We shall next prove a compactness theorem of the Kolmogoroff-Tulajkov type in uniform space (§ 2). We introduce furthermore some topologies into the space of continuous functions and prove a compactness theorem of the Ascoli-Arzelà type, and as an application we shall prove similar theorem for character group of topological group.

§1. On the uniform structure. Let E be a uniform space defined by the uniform structure $\{V_{\alpha}\}_{\alpha \in \mathfrak{A}}$. After A. Weil, for each V_{α} we shall define pseudo-metric d_{α} such that:

$$d_{\alpha}(p, q) \geq 0, \ d_{\alpha}(p, p) = 0, \ d_{\alpha}(p, q) \leq d_{\alpha}(p, r) + d_{\alpha}(r, q)$$

and $p = q \leftrightarrow d_{\alpha}(p, q) = 0$ for all $\alpha \in \mathfrak{A}$.

We define a structure by $W_{\alpha\varepsilon} = \{(p, q); d_{\alpha}(p, q) < \varepsilon\}$; then $\{W_{\alpha\varepsilon}\}_{\alpha, \varepsilon} > 0$ is equivalent to $\{V_{\alpha}\}$. We can replace the triangle condition of $\{d_{\alpha}\}$ by the following: for each $\alpha \in \mathfrak{A}$, there exists $\beta_{\alpha} = \beta \in \mathfrak{A}$ such that $d_{\alpha}(p, q) \leq d_{\beta}(p, r) + d_{\beta}(r, q)$.

The same consideration can be applied for linear topological space (1. t. s.).

Let L be a 1. t. s. defined by the neighbourhood (nbd.) system $\{U_{\alpha}\}_{\alpha\in\mathbb{N}}$ of the origin θ . D. H. Hyers [1] has proved that there exists a family of pseudo-norms $\{|\cdot|_{\alpha}\}$ satisfying the following conditions:

(a) for every $x \in L$ and $\alpha \in \mathfrak{A}$, $|x|_{\alpha} \ge 0$.

(b) for every real λ , $x \in L$ and $\alpha \in \mathfrak{A}$, $|\lambda x|_{\alpha} = |\lambda| \cdot |x|_{\alpha}$.

(c) for every $\alpha \in \mathfrak{A}$, there exists $\beta_{\alpha} = \beta \in \mathfrak{A}$ such that $|x + y|_{\alpha} \leq |x|_{\beta} + |y|_{\beta}$ for all $x, y \in L$.

^{*)} Received April 3, 1950.