NOTES ON FOURIER ANALYSIS (XLIV):
 ON THE SUMMATION OF FOURIER SERIES

GEN-ICHIRÔ Sunouchi

(Received Augut 2, 1950)
This paper consists of three parts. In $\S 1$, we investigate the relation between the logarithmic order of a certain Cesàro mean of function and that of Cesàro sum of its Fourier series (Theorem 1. 2). Our theorem is best possible in a sense (Theorem 1.3) and incidentally it is proved that there is an integrable function which is (C, α) continuous and whose Fourier series is not (C, α) summable. In $\S 2$ we prove a theorem generalizing F. T. Wang's [5] (Theorem 2.1). We give further a relation between Riesz continuity of function and Cesàro summability of its Fourier series (Theorem 2.3). In § 3 we prove a theorem concerning absolute Riesz summability with its converse (Theorem 3.1).

1. We suppose that $\varphi(t)$ is an even integrable function, with period 2π. We denote the $\alpha-$ th integral of $\varphi(t)$ by

$$
\begin{equation*}
\Phi_{\alpha}(\dot{t})=\frac{1}{\Gamma^{\top}(\alpha)} \int_{u}^{1}(t-u)^{\alpha-1} \mathscr{P}(u) d u \quad(\alpha>0), \tag{1.1}
\end{equation*}
$$

and the α-th mean of $\varphi(t)$ by
(1.2) $\quad \varphi_{a}(t)=\mathrm{I}^{(}(\alpha+1) t^{-\alpha} \Phi_{\alpha}(t)$.

Let us write the Fourier series of $\varphi(t)$ as

$$
\mathfrak{S}[\varphi]=\sum_{n=0}^{\infty} a_{n} \cos n t
$$

and denote its ($C, \alpha)$-mean by $\mathrm{C}_{a}(\omega)$.
By the result of Bosanquet [2, pp. 26-27], we have

$$
\begin{equation*}
C_{\alpha}(\omega)=\omega \int_{0}^{\pi} \varphi_{\alpha}(t) J_{\alpha}^{\alpha}(\omega t) d t+o(1), \quad \text { as } \omega \rightarrow \infty \tag{1.3}
\end{equation*}
$$

where $J_{\alpha}^{\alpha}(u)$ satisfies the relation

$$
\begin{equation*}
\left|J_{\alpha}^{\alpha}(u)\right| \leqq K \tag{1.4}
\end{equation*}
$$

for $u \geqq 0$, and
(1.5)

$$
J_{\alpha}^{\alpha}(u)=(\sin (u-\pi \alpha)) / u+O\left(1 / u^{2}\right)
$$

for large u.
We have then the following theorem:
Theorem 1.1. If

$$
\begin{equation*}
\int_{0}^{t}\left|\varphi_{\alpha}(t)\right| d t=o\left(t(\log 1 / t)^{r}\right), \quad(\alpha>0,-1<r<\infty), \tag{1.6}
\end{equation*}
$$

