NOTES ON FOURIER ANALYSIS (XLIV): ON THE SUMMATION OF FOURIER SERIES

GEN-ICHIRÔ SUNOUCHI

(Received August 2, 1950)

This paper consists of three parts. In §1, we investigate the relation between the logarithmic order of a certain Cesàro mean of function and that of Cesàro sum of its Fourier series (Theorem 1. 2). Our theorem is best possible in a sense (Theorem 1. 3) and incidentally it is proved that there is an integrable function which 'is (C, α) continuous and whose Fourier series is not (C, α) summable. In §2 we prove a theorem generalizing F. T. Wang's [5] (Theorem 2.1). We give further a relation between Riesz continuity of function and Cesàro summability of its Fourier series (Theorem 2.3). In §3 we prove a theorem concerning absolute Riesz summability with its converse (Theorem 3.1).

1. We suppose that $\varphi(t)$ is an even integrable function, with period 2π . We denote the α -th integral of $\varphi(t)$ by

(1.1)
$$\Phi_{\boldsymbol{\alpha}}(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-u)^{\boldsymbol{\alpha}-1} \mathcal{P}(u) \, du \qquad (\alpha > 0),$$

and the α - th mean of $\mathcal{P}(t)$ by

(1.2) $\mathscr{P}_{a}(t) = \Gamma(\alpha+1) t^{-\alpha} \Phi_{a}(t).$

Let us write the Fourier series of $\varphi(t)$ as

$$\mathfrak{S}\left[\mathscr{P}\right] = \sum_{n=0}^{\infty} a_n \cos nt$$

and denote its (C, α) -mean by $C_{a}(\omega)$.

By the result of Bosanquet [2, pp. 26-27], we have

(1.3)
$$C_{\alpha}(\omega) = \omega \int_{0}^{\infty} \varphi_{\alpha}(t) J_{\alpha}^{\alpha}(\omega t) dt + o(1), \quad \text{as } \omega \to \infty,$$

where $J^{\alpha}_{\alpha}(u)$ satisfies the relation

(1.4) $|J^{\alpha}_{\alpha}(u)| \leq K$ for $u \geq 0$, and (1.5) $J^{\alpha}_{\alpha}(u) = (\sin(u - \pi \alpha))/u + O(1/u^2)$

for large *u*.

We have then the following theorem :

THEOREM 1.1. If
(1.6)
$$\int_{0}^{t} |\mathcal{P}_{\alpha}(t)| dt = o(t(\log 1/t)^{r}), \quad (\alpha > 0, -1 < r < \infty),$$