A DEFORMATION THEOREM ON CONFORMAL MAPPING

Masatsugu Tsuji

(Received January 30, 1950)

1. Let D be a simply connected domain on z-plane, which contains $z=0$ and $z=\infty$ belongs to its boundary. The boundary Γ of D consists of at most a countable number of curves C, which extend to infinity in the both directions. Let $z_{0}\left(\left|z_{0}\right|=\boldsymbol{r}_{0}\right)$ be the point on Γ, which lies nearest to $z=0$, then a circle $|z|=r\left(>\boldsymbol{r}_{0}\right)$ meets D in a number of cross cuts. We consider only such cross cuts, which separate $z=0$ from $z=\infty$ in D and denote them by $\theta_{r}^{(i)}(i=1,2, \cdots, n=n(r))$.

We assume that $n(r)$ is finite, but may tend to infinity for $r \rightarrow \infty$. We
 put $\theta_{r}=\sum_{i=1}^{n} \theta^{i}$ and $r \theta(r)$ be the total length of θr. θr divides D into $n+1$ simply connected domains. Let D_{r}. be the simply connected one, which contains $z=0$, then D_{r} is bounded by θ_{r} and a part of Γ.

We will prove the following theorem, which is a generalization of Ahlfors' deformation theorem.

THEOREM 1. If we map D conformally on $|w|<1$ by $w=f(z)(f(0)=0)$, then the image of θ_{r} in $|w|<1$ can be enclosed in a finite number of circles $K_{r}^{(i)}$ $(i=1,2, \cdots, \nu(r) \leqq n(r))$, which cut $|w|=1$ orthogonally, such that the sum of radii is less than

$$
\text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad(0<k<1)
$$

where k is any positive number less than 1
When D is bounded by only one curve, then by Ahlfors' deformation theorem, we can prove easily that we can take $k=1$. Hence our theorem is worse than Ahlfors' deformation theorem, but is more general, since D may be bounded by a countable number of curves.

PROOF. First we map D conformally on $\mathfrak{\Im} \zeta>0$ by $\zeta=\varphi(z)$ $\left(\varphi\left(z_{0}\right)=\infty, \varphi(0)=i\right)$, then $z=\infty$ is mapped on a bounded closed set E of masure zero on $\mathfrak{j} \zeta=0$. Let $\lambda_{r}^{(i)}$ be the image of $\theta_{r}^{(i)}$ then $\lambda_{r}^{(i)}$ is a Jordan arc, whose both end points lie on $\mathfrak{j} \zeta=0$. Let $\Delta_{r}^{(i)}$ be the finite domain,

