A DEFORMATION THEOREM ON CONFORMAL MAPPING

MASATSUGU TSUJI

(Received January 30, 1950)

1. Let *D* be a simply connected domain on *z*-plane, which contains z = 0and $z = \infty$ belongs to its boundary. The boundary Γ of *D* consists of at most a countable number of curves *C*, which extend to infinity in the both directions. Let $z_0(|z_0| = r_0)$ be the point on Γ , which lies nearest to z = 0, then a circle $|z| = r(>r_0)$ meets *D* in a number of cross cuts. We consider only such cross cuts, which separate z = 0 from $z = \infty$ in *D* and denote them by $\theta_r^{(1)}(i = 1, 2, \dots, n = n(r))$.

We assume that n(r) is finite, but may tend to infinity for $r \rightarrow \infty$. We

put $\theta_r = \sum_{i=1}^n \theta^{(i)}$ and $r\theta(r)$ be the total length of θ_r . θ_r divides D into n+1 simply con-

nected domains. Let D_r be the simply connected one, which contains z = 0, then D_r is bounded by θ_r and a part of Γ .

We will prove the following theorem, which is a generalization of Ahlfors' deformation theorem.

THEOREM 1. If we map D conformally on |w| < 1 by w = f(z) (f(0) = 0), then the

image of θ_r in |w| < 1 can be enclosed in a finite number of circles $K_r^{(1)}$ $(i = 1, 2, \dots, \nu(r) \leq n(r))$, which cut |w| = 1 orthogonally, such that the sum of radii is less than

const.
$$\exp\left(-\pi \int_{r_0}^{kr} \frac{dr}{r\theta(r)}\right),$$
 $(0 < k < 1),$

where k is any positive number less than 1

When D is bounded by only one curve, then by Ahlfors' deformation theorem, we can prove easily that we can take k = 1. Hence our theorem is worse than Ahlfors' deformation theorem, but is more general, since D may be bounded by a countable number of curves.

PROOF. First we map D conformally on $\Im \zeta > 0$ by $\zeta = \varphi(z)$ $(\varphi(z_0) = \infty, \varphi(0) = i)$, then $z = \infty$ is mapped on a bounded closed set E of masure zero on $\Im \zeta = 0$. Let $\lambda_r^{(i)}$ be the image of $\theta_{r_i}^{(i)}$ then $\lambda_r^{(i)}$ is a Jordan arc, whose both end points lie on $\Im \zeta = 0$. Let $\Delta_r^{(i)}$ be the finite domain,