ON ASYMPTOTICALLY ABSOLUTE CONVERGENCE

TAMOTSU TSUCHIKURA

(Received February 6, 1951)

Let us consider the series

(1)

$$\sum_{n=1}^{\infty} a_n$$

of real numbers a_n . We shall say that the series (1) is asymptotically absolutely convergent if there exists an increasing sequence of positive integers $\{n_k\}$ such that $k/n_k \rightarrow 1$ as $k \rightarrow \infty$ and the subseries

$$(2) \qquad \qquad \sum_{k=1}^{n} a_{n_k}$$

converges absolutely.

We shall establish, in this note, a uneorem of Tauberian type and some results for trigonometrical series.

1. Tauberian theorem.

THEOREM 1. Suppose that the series (1) is asymptotically absolutely convergent, and one of the following three conditions is satisfied:

 $(\mathbf{i}) \{ |a_n| \}$ is a monotone sequence;

(ii) $|a_{n+1}| < (1 + C/n)|a_n|$ $(n \ge n_0)$, where C and n_0 are positive constants independent of n;

(iii) for some B which is independent of $N = 1, 2, \dots$,

(3)
$$\sum_{n=1}^{N-1} n |a_n| - |a_{n+1}| + N|a_N| \leq B \sum_{n=1}^{N} |a_n|.$$

Then the series (1) converges absolutely.

PROOF. If (i) is satisfied, then the absolute convergence of the series of type (2) implies the decreaseness of $|a_n|$; and (i) is included in (ii). On the other hand, (ii) implies the inequality (3). For, Supposing $n_0 = 1$,

$$\sum_{n=1}^{N-1} n \left| |a_n| - |a_{n+1}| \right| + N |a_N|$$

$$\leq \sum_{n=1}^{N-1} n \frac{C}{n} |a_n| + \sum_{n=1}^{N} \left(1 + \frac{C}{N-1} \right) \left(1 + \frac{C}{N-2} \right) \cdots \left(1 + \frac{C}{n} \right) |a_n|$$

$$\leq C \sum_{n=1}^{N-1} |a_n| + e^C \sum_{n=1}^{N} |a_n| \leq (C + e^C) \sum_{n=1}^{N} |a_n|.$$

Hence it is sufficient to prove the absolute convergence of (1) under the condition (iii). Suppose that (2) converges absolutely and $k/n_k \rightarrow 1$ as $k \rightarrow \infty$. Let $\mathcal{E}_n = 1$ if $n = n_k$, $k = 1, 2, \dots$, and $\mathcal{E}_k = 0$ otherwise. Then, as we see easily,