AN EXTENSION OF BLOCH'S THEOREM AND ITS APPLICATIONS TO NORMAL FAMILY

MASATSUGU TSUJI

(Received May 22, 1952)

In the former paper¹⁾, I have proved the following extension of Bloch's theorem :

THEOREM 1. Let w = f(z) be meromorphic in |z| < 1 and

$$\frac{|f'(0)|}{1+|f(0)|^2} = 1.$$

Then the Riemann surface F generated by w = f(z) on the w-sphere contains a schlicht spherical disc, whose radius is $\geq \rho_0 > 0$, where ρ_0 is a constant independent of f(z).

In this paper, I shall apply this theorem to normal family.

THEOREM 2.²⁾ Let D_1, \dots, D_q $(q \ge 3)$ be q disjoint simply connected domains on the w-sphere and $1 \le m_i \le \infty$ be positive integers or ∞ , such that

$$\sum_{i=1}^{n} (1 - 1/m_i) > 2.$$

Let w = f(z) be mermorphic in |z| < R and F be the Riemann surface generated by w = f(z) on the w-sphere. If every simply connected island of F, which lies above D_i is of multiplicity $\geq m_i^{3}$, then

$$R \leq \kappa \frac{1+|f(0)|^2}{|f'(0)|}, \qquad \frac{|f'(0)|}{1+|f(0)|^2} \leq \frac{\kappa}{R},$$

where κ is a constant, which depends on D_1, \dots, D_q only.

PROOF. It can be proved easily that if $\sum_{i=1}^{n} (1 - 1/m_i) > 2$, then

(1)
$$\sum_{i=1}^{q} (1-1/m_i) - 2 \ge 1/42,$$

where the minimum value 1/42 is attained, when $m_1 = 2$, $m_2 = 3$, $m_3 = 7$, $m_4 = \cdots = m_q = 1$.

First suppose that

(2)
$$\frac{|f'(0)|}{1+|f(0)|^2} = 1.$$

- 1) M. TSUJI, On an extension of Bloch's theorem. Proc. Imp. Acad., 18(1942).
- J. DUFRESNOY, Sur les domaines couverts par les valeurs d'une fonction méromorphe ou algébroïde. (Thèse, 1935). Z. YÛJÔBÔ, An application of Ahlfors' theory of covering surfaces. Jour. Math. Soc. Japan., 4(1952).
- 3) $m_i = \infty$ means that there is no island of F above D_i .