ON THE PRINCIPAL GENUS THEOREM CONCERNING THE ABELIAN EXTENSIONS

Fumiyuki Terada

(Received May 31, 1952)

Introduction

The principal genus theorem in a cyclic extension plays an important role in the study of the class field theory. A generalization of this theorem in the case of an abelian extension will be shown in this note. It was a long standing conjecture of Professor Tadao Tannaka.

Let K be an abelian extension of an algebraic number field k, and \mathfrak{f} and \mathfrak{F} be the conductor and the "Geschlechtermodul" of K / k respectively. Let m be an integral module in k. Let us denote the ray ("Strahl") mod. mf in k and mod. $\mathfrak{m} \mathfrak{F}$ in K by $R_{k}(\mathfrak{m f})$ and $R_{K}(\mathfrak{m} \mathfrak{F})$, respectively. H. Hasse proved the following so-called principal genus theorem for a cyclic extension (Cf.[1], pp. 304-310) :

If K / k is a cyclic extension, following two conditions concerning an ideal \mathfrak{A} of K are equivalent :

$$
\begin{gather*}
N_{K k} \mathfrak{H} \in R_{k}(\mathfrak{m} \mathfrak{f}), \tag{1}\\
\mathfrak{A}=\mathfrak{B}^{1-\sigma}(A), \quad(A) \in R_{K}(\mathfrak{m} \mathfrak{F}), \tag{2}
\end{gather*}
$$

where σ is a generator of Galois group G of K / k.
The generalization in quite the same form seems to be difficult, and we take up the transformation set instead of the norm in (1). Namely, starting from a given ideal \mathfrak{H}, define an ideal $\mathfrak{H}\left(\sigma^{a}\right)$ corresponding to each element σ^{a} of G as the following :

$$
\mathfrak{A}(1)=1, \quad \mathfrak{A}(\sigma)=\mathfrak{A}, \quad \mathfrak{H}\left(\sigma^{a}\right)=\mathfrak{H}(\sigma)^{\sigma^{a-1}} \mathfrak{A}\left(\sigma^{a-1}\right) \quad\left(0<a<e, \quad \sigma^{e}=1\right)
$$

Then, on the one hand, the condition (1) is equivalent to the condition

$$
\begin{equation*}
\mathfrak{H}(\rho)^{\tau} \mathfrak{Y}\left(\boldsymbol { \mathcal { } } \left(\boldsymbol{\mathfrak { A }}(\rho \tau)^{-1} \in R_{k}(\mathfrak{m} \mathfrak{f})\right.\right. \tag{3}
\end{equation*}
$$

for all ρ, τ in G. And, on the other hand, the condition (2) is equivalent to the existence of an ideal \mathfrak{B} such that

$$
\begin{equation*}
\mathfrak{2}(\rho)=\mathfrak{B}^{1-\rho}(A(\rho)), \quad(A(\rho)) \in R_{K}(\mathfrak{m} \mathfrak{F}) \tag{4}
\end{equation*}
$$

for any ρ in G. Moreover, these numbers $A(\rho)$ satisfy the condition:

$$
\begin{equation*}
A(\rho)^{\tau} A(\tau) A(\rho \tau)^{-1} \equiv 1 \bmod . \mathrm{mf}, \quad \text { and is contained in } k \tag{5}
\end{equation*}
$$

for any ρ, τ in G. So that, in the case of a cyclic extension, the assertion $(1) \rightarrow(2)$ is equivalent to the assertion (3) \rightarrow (4), (5).

In an arbitrary abelian extension K / k, we shall deal with a generalization in this form. Let us denote by $\{\mathfrak{H}(\rho)\}$ a system of ideals in K corresponding to the elements of Galois group G of K / k. The main theorem in this note

